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Abstract

Limit loads can be calculated with the finite element method (FEM) for any component, defect geometry, and loading. FEM suggests that

published long crack limit formulae for axial defects under-estimate the burst pressure for internal surface defects in thick pipes while limit

loads are not conservative for deep cracks and for pressure loaded crack-faces. Very deep cracks have a residual strength, which is modelled

by a global collapse load. These observations are combined to derive new analytical local and global collapse loads. The global collapse loads

are close to FEM limit analyses for all crack dimensions.
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1. Introduction

Many burst tests with flawed pipes and vessels indicate

that the burst pressure could be predicted by plastic limit

analysis [1–3]. Limit load formulae are needed for defect

assessment by the two criteria methods [4–8] or the

engineering treatment method [9]. In the reference stress

approach, they can be used to estimate nonlinear fracture

mechanics parameters such as crack tip opening displace-

ment (CTOD), J and C* integrals [7,10].

Plastic limit loads for axial defects in pipes have been

collected in Refs. [11,12]. A new type of local and global

collapse loads has been derived in Ref. [13] combining the

solutions for long defects and for slits. However, the

formulae in Refs. [4,12,13] are not correct. Burst tests could

be explained by limit analysis for a wide range of materials

and of the dimensions of pipes and defects in Ref. [2].

However, Ref. [2] also showed that existing global collapse

loads need to be further improved and proposed some ad hoc

improvements. In Ref. [14], new global formulae have been

obtained by approximation to incremental finite element

limit analyses for thin pipes.
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In this contribution, corrections of the thick pipe limit

loads in Ref. [12] are made. They are then used to derive

improved global and local collapse loads for thick pipes in

the sense of Refs. [4,5,13]. The global collapse loads are

compared to lower bound finite element limit loads with and

without pressure loading on internal cracks. The results are

used to suggest also new local collapse loads. In Ref. [3], the

new global collapse loads are compared to 278 burst tests

with thick and thin-walled pipes.

Reliable limit loads are important, because over-

estimating burst pressure is clearly non-conservative.

However, under-estimating limit loads could also be non-

conservative, because it leads to under-predicting CTOD

and crack opening area and consequently also to under-

predicting leak rates.
1.1. Limit analysis

Stresses s are admissible in a perfectly plastic material

model, if they satisfy the Tresca or the von Mises yield

condition F(s)%sy. With equality F(s)Zsy in one point,

the elastic limit (0.2% strain limit) syZRp0.2 is assumed and

yielding can begin there. In the context of the two-surface

theory of plasticity, the yield surface FYðsÞ%syZRp0:2 can

harden kinematically within a bounding surface FU(s)%su
                      http://dx.doi.org/10.1016/j.ijpvp.2004.07.022
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Nomenclature

a crack length

c crack depth

D constraint factor

E Young’s modulus

eps relative prognosis error

FY, FU yield function, bounding function

f function

MFL Folias factor

M1, M2 Folias factor for internal and external defect

n exterior unit normal

P reference pressure

�p0; p0 burst pressure without defect old, new

pexp, pformula experimental, predicted burst pressure

�pglobal; pglobal global collapse pressure old, new

�plocal; plocal local collapse pressure old, new

�pL; pL collapse pressure of defect pipe old, new

R�
1 ; R1 distinction of crack-face loading old, new

r1, r2 interior and exterior radius, respectively

Rp0.2 0.2% proof stress

Rm ultimate stress

t wall thickness

g limit load factor

U body

vUs traction boundary

s stress tensor

sy yield stress

su ultimate stress

sF flow stress
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with some ultimate stress su. In the simplest theory, the

bounding surface is assumed as fixed in size, form, and

location in stress space. Usually the same function is used

for both surfaces, i.e. FðsÞZFYðsÞZFUðsÞ:

The structure U is loaded monotonically by the surface

traction p on the traction boundary vUs. For simplicity of

the presentation, the body forces are neglected. The

tractions are proportional to the internal pressure p. Starting

from some reference pressure P, one may ask for the load

factor gO1 by which P can be increased up to the collapse

pressure pLZgP. The limit load pL of a bounded kinematic

hardening material can be computed exactly by the

maximum problem, [15],

maximize g; such that FðsÞ%su in U;

Kdiv s Z 0 in U; sn Z gPn on vUs: ð1Þ

The finite element discretisation of this optimization

problem has been implemented in the finite element method

(FEM) software PERMAS [16] and solved by a basis

reduction technique. The numerical method of the limit

analysis is presented in detail in Ref. [15]. The linear

matching method has been developed from the elastic

compensation method as an alternative for FEM limit
Fig. 1. External semi-elliptical surface defec
analysis [17]. Compared to the basis reduction method, the

elastic compensation method is more easily programmed

but it seems to have some difficulties to converge [18].

The maximum problem (1) shows that the burst pressure

pL is homogeneous of first order in su. Therefore, one may

write in non-dimensional similarity variables

pL

su

Z Df ða=t; a=c; t=r1; r2=r1;.Þ: (2)

Here, the crack size is characterised by crack depth a and

crack length 2c as shown in Fig. 1. The pipe geometry is

characterised by r1, r2 and t which are internal and external

radius and wall thickness. The constraint factor D

distinguishes the yield condition

D Z

1 for Tresca;

2ffiffiffi
3

p for von Mises

8><
>: (3)

for problems of pressurised pipes without defects.

Often the limit load analysis is only understood in a

perfectly plastic context with suZsyZRp0.2 and the

fictitious failure load is called the limit load. Eq. (1)

shows that the yield stress has no influence for kinematic
t and infinitely long defect in a pipe.
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hardening material and that the actual load at failure is the

ultimate load calculated with some su. In the two criteria

methods, only partial use is made of hardening by setting su

equal to the flow stress sF,

su Z sF Z
Rp0:2 CRm

2
: (4)

In 300 burst tests with pipes with axial defects, this was a

best choice [3]. Limit analysis predicts only global collapse

load. The local collapse load is sometimes related with

ligament (or net-section) collapse. As the ligament thickness

tends to zero with a/t, the local collapse load tends to zero.

However, the pipe may still carry the limit load, i.e. the

global collapse load.
2. The extreme cases
2.1. Thick pipe without defect

The burst pressure p0 of the thick-walled pipe without

defects is

p0

su

Z D ln
r2

r1

Z D ln 1 C
t

r1

� �

Z D
t

r1

K
1

2

t

r1

� �2

C
1

3

t

r1

� �3

K/

� 	
; (5)

which must be assumed asymptotically by realistic limit

load solutions for the cracked pipe. Therefore, the constraint

factor D is introduced in all equations below, although it is

originally omitted in most of the equations that have been

cited from different references. The series expansion (5)

converges for t/r1%1. The solution for the Tresca yield

function applies independently of the conditions at the pipe

end. The solution for the hypothesis after von Mises does

not apply to the open pipe with free ends.

The approximation

�p0

su

Z D
t

r1

(6)

for thin pipes over-estimates the load-carrying capacity of

thick pipes, as the series expansion (5) shows. For nZ0.3,

the assumption of small deformations applies and therefore

Eq. (5) remains valid with the Tresca hypothesis up to r2/

r1Z5.43 for closed ends [19]. The limits in which the

relation is valid with the von Mises hypothesis are discussed

in Ref. [19]. In the following, a closed pipe is assumed.
2.2. Pipes with penetrating axial cracks

For the collapse load of wall penetrating longitudinal

cracks, semi-empirical formulae were set-up, which are

often called Battelle formula or slit curve in the

literature. According to Refs. [1,20], the burst pressure of
the penetrating axial crack can be written in the form

�pL

su

Z D
t

r1MFL

: (7)

A simple relation for the Folias factor MFL is

MFL Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 C1:61

c2

r1t

s
: (8)

For c/0, MFL/1. The burst pressure must then become

the load (5) for the uncracked pipe. Therefore, it is

suggested to generalise the Battelle formula (7) by

pL

su

Z
D

MFL

ln
r2

r1

(9)

for thick pipes. This modification is supported by the FEM

limit analyses for penetrating defects (i.e. a/tZ1, most

obviously for a/cO0.4).
2.3. Long axial cracks in pipes

A lower bound for the limit load of a thick pipe with a

long defect is obtained, if the pipe is divided into two

coaxial pipes Pipe 1 carries the defect (slit pipe) and is stress

free. Pipe 2 is a pipe thinned by a and is at yield in all of its

points.

By this consideration, the collapse load

lim
c/N

�pL

su

Z D
r1

R�
1

� �
ln

r2

r1 Ca

� �� 	
(10)

with

R�
1 Z

r1 pressure � excluding crack faces;

r1 Ca pressure � including crack faces

(
(11)

was presented for the internal crack with R�
1 Zr1 in Ref.

[12]. That is a lower bound solution with a piecewise

continuous effective stress field such that F(s(r))Zsu for

r1Ca!r!r2. This incorrectly assumes that the internal

pressure acts on a cylinder of radius r1Ca. By correcting

r1Ca to the internal pipe radius r1

lim
c/N

pL

su

Z D
r1

R1

� �
r1 Ca

r1

� �
ln

r2

r1 Ca

� �� 	
(12)

equilibrium is achieved at least for the hoop stress. It is less

conservative to replace R�
1 with R1,

R1 Z
r1 pressure � excluding crack faces;

r1 C
a

2
pressure � including crack faces:

8<
: (13)

The limit load for the external defect

lim
c/N

pL

su

Z D ln
r2 Ka

r1

� �
(14)

is correct in Ref. [12].



Fig. 2. FEM mesh and von Mises stress for internal defect in a thick pipe (r2/r1Z2) with syZsuZ250 N mmK2. The defect causes unloading behind the crack

front.
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3. Global collapse of pipes containing axial surface

defects
3.1. Global collapse of pipes containing internal defects

A lower bound of the global limit load dependent on the

defect position is obtained, by dividing the pipe into two

coaxial pipes, which together are in static equilibrium with

the internal pressure [12]. Pipe 1 contains the surface crack

as a penetrating defect. Pipe 2 is intact with a collapse load
Fig. 3. Carter’s global collapse pressure ( �pglobal; Eq. (15)) compared with FEM

formula /. The pressures are normalised by p0.
after Eq. (5). In this way, the collapse load for the thick pipe

with an internal axial surface crack has been obtained in

Refs. [12,13]

�pglobal

su

Z D
a

r1M1

C
r1

R�
1

� �
ln

r2

r1 Ca

� �� 	
(15)

with the Folias factor M1

M1 Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 C1:61

c2

r1a

s
(16)
limit analyses for internal defects in a thick pipe with r2/r1Z2. FEM —,



Fig. 4. New global collapse pressure (pglobal, Eq. (17)) compared with FEM limit analyses for internal defects in a thick pipe with r2/r1Z2. FEM —, formula /.

The pressures are normalised by p0.
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using Eqs. (7) and (10). R�
1 makes the distinction of cases of

crack-face loading of Eq. (11) for the long defect part of the

solution only.

The global collapse pressure is extensively checked

against lower bound FEM limit analyses with rectangular

and semi-elliptical defects. A typical FEM net of an

internal defect in a thick-walled pipe with r2/r1Z2 is

shown in Fig. 2. Only one quarter of the pipe has been

modelled, because of the symmetry of the problem.

The rectangular defect causes unloading behind the crack

front. There is no need for special crack tip elements or

for mesh refinement, because of plastic collapse is not

controlled by the crack tip. All analyses have been

repeated with thin-walled pipes (r2/r1Z1.1) with both

types of crack shape, rectangular and semi-elliptical.

These show similar trends but the differences between

FEM limit analysis, old and new collapse formulae are

less pronounced for thin pipes. The formulae have been

derived for rectangular defects. Therefore, they are

compared with FEM solutions for this crack shape.

The global collapse pressure (15), normalised with the

burst pressure p0ZsuD lnðr2=r1Þ of the pipe without a

defect, is compared with FEM limit analyses in Fig. 3 for
Fig. 5. Sections of different continuous stress fields at plastic
a thick-walled pipe with r2/r1Z2. The long crack limit

(10), i.e. c/N or a/c/0, under-estimates the burst

pressure. But the deep crack solution (a/tO0.8) is not

conservative for shorter defects with a/cO0.4. Moreover,

the pressure on the crack-faces is not considered for deep

cracks such that the solution greatly over-estimates the

burst pressure for all defect shapes a/c as is obvious from

Fig. 3(b).

By use of the corrected Eqs. (9) and (12) an improved

global collapse load is found

pglobal

su

Z D min ln
r2

r1

� �
;

r1

R1

� �
1

M1

ln
r1 Ca

r1

� ���

C
r1 Ca

r1

� �
ln

r2

r1 Ca

� �	

:

(17)

Here, the effect of pressure on the crack-faces is also

correctly considered on the slit part of the solution. As limit

value for c/N one obtains the new lower bound (12) for

the local collapse because M1/N.

Fig. 4 shows that Eq. (17) greatly improves the global

collapse load for all limiting cases, for deep or long internal

defects. The new long crack limit (12) is a close lower

bound. For sealed crack-faces in Fig. 4(a), the solution
collapse of an external axial surface crack in a pipe.



Fig. 6. Global collapse pressure formulae compared with FEM analyses for external defects in a thick pipe with r2/r1Z2. FEM —, formula /. The pressures

are normalised by p0.
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needs to be bounded by p0 ZsuD lnðr2=r1Þ for small defects.

Fig. 4(b) shows that the new solution (17) is accurate for

pressurised crack-faces for all parameters and that the limit

p0 hardly becomes active.
1 A misprint in Ref. [4], p. AII.36, has been corrected in Eq. (22).
3.2. Global collapse of pipes containing external defects

In Refs. [4,13], the partition into sections as shown in

Fig. 5(a) leads to a piecewise continuous stress field

which has been used to derive global collapse loads for

the thick pipe with an axial surface crack at the external

wall

�pglobal

su

Z D
a

ðr2 KaÞM2

C ln
r2 Ka

r1

� �� 	
(18)

with the Folias factor M2

M2 Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 C1:61

c2

ðr2 KaÞa

s
: (19)

This can be improved if Eq. (7) is replaced by Eq. (9)

such that

pglobal

su

Z D
1

M2

ln
r2

r2 Ka

� �
C ln

r2 Ka

r1

� �� 	
: (20)

With finite c Eqs. (15) and (20) approach the solution

(9) of the penetrating defect for a/t. As limit value for

c/N, one obtains the lower bound of Eq. (12) for local

collapse because M2/N.

The modification of Eq. (18) in Eq. (20) concerns only

the thick wall correction of the slit solution. The difference

can be observed for the wall penetrating defect (a/tZ1) in

Fig. 6.

The new global formula (20) has been compared to 278

burst tests with external or penetrating defects in Ref. [3].

Fig. 7 shows that the relative prognosis error eps,
eps Z
pexp Kpformula

pformula

(21)

increases by its definition for long, deep defects due to

uncertainties of geometric and material data (eps/N for

pformula/0 and 0!pformula!pexp; eps/K1 for pformula/0

and pformulaOpexpO0). Therefore, conservative data have to

be used in defect assessment. Probabilistic fracture mech-

anics is a modern alternative [21].

All FEM limit analyses have been checked with

internal and external semi-elliptical defects. Fig. 8 for

external defects shows that the FEM limit analyses with

rectangular defects are slightly conservative with respect to

semi-elliptical defect shapes. The differences are smaller for

thin pipes.
4. Local collapse of pipes containing axial surface defects
4.1. Local collapse of pipes containing internal defects

For the thick pipe with an internal semi-elliptical surface

crack in the longitudinal direction local collapse loads are

given1 in Refs. [4,13]

�plocal

su

Z
D

s1 Cc
s1 ln

r2

r1

� �
Cc

r1

R�
1

� �
ln

r2

r1 Ca

� �� 	
(22)

along with

s1 Z
ca 1 K a

t

� �
M1r1 ln r2

r1

� �
K r1

R�
1

� �
ln r2

r1Ca

� �h i
Ka

(23)

and the distinction of cases of crack-face loading (11).



Fig. 7. Relative prognosis error of 278 experiments with external defects from Ref. [3] compared with G5% variation of wall thickness t in the new global

formula (20) plotted for a thick pipe (r2/r1Z2):C, — burst pressure under-rated, !, / burst pressure over-rated.

Fig. 8. FEM limit analyses for rectangular and semi-elliptical internal

defects in a thick pipe (r2/r1Z2). Rectangular —, semi-elliptical /. The

pressures are normalised by p0.
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Repeating all arguments that lead to the improved global

limit load for the internal crack the modified local collapse

load

plocal

su

Z D min ln
r2

r1

� �
;

1

S1 Cc
S1ln

r2

r1

� ���

Cc
r1 Ca

R1

� �
ln

r2

r1 Ca

� �	
 (24)

is obtained along with

S1 Z
c ln r1Ca

r1

� �
1 K a

t

� �
M1

r1

R1

� �
ln r2

r1

� �
K r1Ca

r1

� �
ln r2

r1Ca

� �h i
K ln r1Ca

r1

� �
(25)

and the distinction of cases (13). As limit value for c/N
one finds (12).

No distinction can be made between global and local

collapse for long defects with c/N, i.e. a/c/0. There-

fore, the local collapse can be checked against FEM limit

analysis for this case. The new local formulae are close to

the FEM solution whereas Carter’s formulae are unnecess-

arily conservative for internal defects. A check against limit

analysis is not possible for finite crack length. However, the

local formulae are derived from the same extreme cases.

Therefore, it is expected that all corrections of the solutions

of these extreme cases will improve the local collapse

pressures in the same way as it was proved for the global

collapse. The same corrections as for the global collapse can

be observed for the local collapse in Fig. 9. Also the local

formulae (24) and (25) need to be bounded by p0. It is

characteristic for the local collapse that there is no residual

strength for wall penetrating defects (a/tZ1). The largest

difference between the new formulae (24) and (25) and the

old local collapse pressure (22) and (23) is found for the

pressure loaded defect. The more complete consideration of

the pressure loading on the crack-faces in the new local

formulae is considered more safe.
4.2. Local collapse of pipes containing external defects

The local collapse load for the external defect is derived

in Ref. [13] from the piecewise continuous stress field with

the partition into sections as shown in Fig. 5(b),

�plocal

su

Z
D

s2 Cc
s2 ln

r2

r1

� �
Cc ln

r2 Ka

r1

� �� 	
(26)

with

s2 Z
ca 1 K a

t

� �
M2ðr2 KaÞ ln r2

r1

� �
K ln r2Ka

r1

� �h i
Ka

: (27)

By replacing Eq. (7) by Eq. (9) an improved solution

plocal

su

Z
D

S2 Cc
S2 ln

r2

r1

� �
Cc ln

r2 Ka

r1

� �� 	
(28)

is obtained with

S2 Z
c ln r2

r2Ka

� �
1 K a

t

� �
M2 ln r2

r1

� �
K ln r2Ka

r1

� �h i
K ln r2

r2Ka

� � : (29)



Fig. 9. New local collapse pressure (plocal, Eqs. (24) and (25)) compared with Carter’s local collapse pressure ( �plocal; Eqs. (22) and (23)) for internal defects in a

thick pipe with r2/r1Z2. New formula —, Carter’s formula /. The pressures are normalised by p0.
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One finds Eq. (14) as the limit function for c/N. The new

and the old local collapse formulae (28), (29) and (26), (27),

respectively, are compared in Fig. 10.
5. Conclusions and comments

A new close lower bound limit load has been derived for

internal long defects in thick-walled pipes. It replaces a

widely used but strongly conservative limit load. The slit

solution for fully penetrating cracks in thin pipes has been

modified for thick pipes. The effect of pressure loading of

crack-faces has been reconsidered.

Improved global and local collapse loads have been

proposed for internal and external axial defects for all cases:

long, short (to defect free) or deep (including penetrating)

cracks, thin and thick pipes. The new formulae are
Fig. 10. New local collapse pressure (plocal, Eqs. (28) and (29)) compared

with Carter’s local collapse pressure ( �plocal; Eqs. (26) and (27)) for external

defects in a thick pipe with r2/r1Z2. New formula —, Carter’s formula /.

The pressures are normalised by p0.
particularly recommended as safe global and local solutions

for crack-faces with applied pressure, because previously

existing solutions are found to severely over-estimate the

residual strength for shorter cracks.

The new global collapse loads have been checked against

lower bound finite element (FEM) limit analyses with

rectangular defects in thick pipes (wall thickness equal to

internal radius). Additional FEM checks have been made

with semi-elliptical defects and for thin-walled pipes.
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