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Abstract. The structural reliability with respect to plastic collapse or to inadaptation is formu-
lated on the basis of the lower bound limit and shakedown theorems. A direct definition of the
limit state function is achieved which permits the use of the highly effective first order reliabil-
ity methods (FORM) is achieved. The theorems are implemented into a general purpose FEM
program in a way capable of large-scale analysis. The limit state function and its gradient are
obtained from a mathematical optimization problem. This direct approach reduces consider-
ably the necessary knowledge of uncertain technological input data, the computing time, and
the numerical error, leading to highly effective and precise reliability analyses.
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1 INTRODUCTION

Present structural reliability analysis is typically based on the limit state of initial or local
failure. This may be defined by first yield or by some member failure if the structure can
be designed on an element basis. However, this gives quite pessimistic reliability estimates,
because virtually all structures are redundant or statically undetermined. They are quite safe
beyond initial failure. Progressive member failures of such systems reduce redundancy until
finally the statically determined system fails. This system approach is not defined in an obvious
way for a finite element (FE) representation of a structure.
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Figure 1: Bree-Diagram of thin wall tube

Collapse is the loss of stiffness. Ratchetting and low cycle fatigue (LCF) must be read from
time evolution of plastic deformation as sketched in the Bree-Diagram3, Fig. 1. Both, loss of
stiffness and time evolution are difficult to use in a mathematical expression of the limit state
function separating failure from safe structure. For loss of stiffness the smallest eigenvalue of a
large FEM stiffness matrix should be monitored, but this is numerically difficult and expensive.
Moreover, the reliability problem becomes a non-linear first passage problem. Until today
first order reliability methods (FORM) could not be used with standard incremental plastic
analysis because non-linear sensitivity analysis would be necessary for computing the gradient
of the limit state function. Therefore one was restricted to simple but ineffective Monte-Carlo
Simulation (MCS) and mostly local failure definitions.
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All these problems are overcome by direct limit and shakedown analyses, because they com-
pute directly the load carrying capacity or the safety margin. Therefore, they may be used to
combine finite element methods (FEM) with FORM for defining the failure. Moreover, the
solution of the resulting optimization problem provides the sensitivities with no extra costs. In
comparison with MCS a speed up of some 100 and 1000 is achieved with limit and shakedown
analysis, respectively. The direct approach computes safety without going through the different
progression of local failures for all possible load histories. Moreover, it needs only key strength
information of the material. Therefore, limit and shakedown analysis is an obvious choice for
reliability analysis of structural problems with uncertain data of loading and of the structure.

2 RELIABILITY ANALYSIS

The behaviour of a structure is influenced by various typically uncertain parameters (load-
ing type, loading magnitude, dimensions, material data,. . . ). All parameters are described by
random variables collected in the vector of basis-variables X = (X1, X2, ...). We will restrict
ourselves to those basis–variables Xj which could be described by densities fj , such that the
joint density f(x1, . . . , xn) exists and the joint distribution function F (x) is given by

F (x) = P (X1 < x1, . . . , Xn < xn) (1)

=

x1∫

−∞
· · ·

xn∫

−∞
f(t1, . . . , tn)dt1 . . . dtn. (2)

The deterministic safety margin R − S is based on the comparison of a structural resistance R
and loading S (which is usually a local stress at a hot spot or in a representative cross-section).
With R, S function of X the structure fails for any realization with non-positive limit state
function

g(X) = R − S. (3)

The limit state g(X) = 0 defines the limit state surface ∂V which separates the failure region
V from the safe region. The failure probability Pf is the probability that g(X) is non-positive,
i.e.

Pf = P (g(X) ≤ 0) =
∫

V

fX(x)dx. (4)

Usually, it is not possible to calculate Pf analytically. The computational effort of straight
forward MCS increases quickly with reliability. Therefore any effective analysis is based on
First and Second Order Reliability Methods4 (FORM/SORM).

The basis-variables X are transformed into standard normal variables U, such that gu is the
corresponding limit state function in U–space. In FORM, a linear approximation VF of the
failure region V is generated, such that the limit state surface ∂V is approximated in a point u0

by
∂V =

{
u

∣∣∣ αTu + β = 0
}

, (5)
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with |α| = 1. If the limit state function is linear in the U–space, then the failure probability Pf

is exactly given by
Pf = P(αT U ≤ −β) = Φ(−β) (6)

where Φ is the Gauss distribution function. The failure probability Pf depends only on the
safety index β. In limit analysis the limit state function is linear in strength and loading. This
favourable situation is preserved in U–space, if both are normally distributed.

The design point u∗ is the solution of the optimization problem

β = min{uTu, | gu(u) ≤ 0}. (7)

Then Pf may be computed from the minimum distance of the limit state surface ∂V from
origin in this U–space. The design point is the point u∗ on ∂V , which is the closest to the
origin. Failure is most probable for data near the design point. The limit state function gu(U)
is approximated by its linear Taylor series of a point u0 ∈ ∂V in order to generate the iterative
procedure

uk+1 =
∇ugu(uk)

|∇ugu(uk)|2
[
uT

k ∇ugu(uk) − gu(uk)
]
. (8)

as a search algorithm for u∗. This poses a nonlinear optimization problem which needs the
gradient of gu(u). The derivates are determined by

∇ugu(u) = ∇ug(x) = ∇xg(x)∇ux. (9)

If the deterministic structural problem is solved in a step-by-step iterative FEM analysis this
gradient information is obtained from a sensitivity analysis, which consumes much computing
time. Extension of this type of reliability analysis to plastic structural failure faces several
already mentioned problems which are not present in linear elastic analysis: local stress has no
direct relevance to plastic failure and structural behaviour becomes load-path dependent. No
straight-forward g(X) is obtained from standard incremental analysis if failure is assumed by
plastic collapse, by ratcheting or by plastic shakedown (LCF). It is even more difficult to obtain
the gradient of g(X). Therefore, as an additional draw-back MCS (improved by importance
sampling or by some other means of variance reduction) is used in connection with incremental
nonlinear reliability analyses.

In FEM, limit and shakedown analysis are formulated as optimization problems. For these
optimization problems the Lagrange multipliers of the solution are the strength and the load
components of the gradient vector ∇xg(x). Thus, no sensitivity analysis is necessary.

3 CONCEPTS OF LIMIT AND SHAKEDOWN ANALYSIS

Static theorems are formulated in terms of stress and define safe structural states by giving
an optimization problem for safe loads. The maximum safe load is the limit load avoiding
collapse. Alternatively, kinematic theorems are formulated in terms of kinematic quantities and
define unsafe structural states yielding a dual optimization problem for the minimum of limit
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loads. Any admissible solution to the static or kinematic theorem is a true lower or upper bound
to the safe load, respectively. Both can be made as close as desired to the exact solution. If
upper and lower bound coincide, it could be stated that the true solution has been found.

3.1 Static or lower bound limit load analysis

The limit load factor is defined in (10) by α = Pl/P0, where Pl = (bl,pl) and P0 =
(b0,p0) are the plastic limit load and the chosen reference load, respectively. Here we have
supposed that all loads (b body forces and p surface loads) are applied in a monotone and
proportional way. We look for the maximum load factor for which the structure is safe. The
structure is safe against plastic collapse if there is a stress field σ such that the equilibrium
equations are satisfied and the yield condition is nowhere violated. We obtain the following
maximum problem:

max α

s. t. Φ(σ) ≤ σy in Ω

divσ = − αb0 in Ω (10)

σ n = αp0 on ∂Ωσ

for the structure Ω, traction boundary ∂Ωσ (with outer normal n), yield function Φ, body forces
αb0 and surface loads αp0.

3.2 Static or lower bound shakedown analysis

The shakedown analysis starts from Melan’s lower bound theorem9. In the shakedown anal-
ysis the equilibrium conditions and the yield criterion for the actual stresses have to be fulfilled
at every instant of the load history. We look for the maximum load factor for which the structure
is safe. The structure is safe against LCF or ratcheting if there is a stress field σ(t) such that
the equilibrium equations are satisfied and the yield condition is nowhere and at no instant t
violated. We formulate the next maximum problem:

max α

s. t. Φ(σ(t)) ≤ σy in Ω

divσ(t) = − αb0(t) in Ω (11)

σ(t) n = αp0(t) on ∂Ωσ

for body forces αb0(t) and surface loads αp0(t), for all b0(t), p0(t) in a given initial load
domain L0.

In the maximum problems (10) and (11), the actual stresses σ and σ(t) are splitted into ficti-
tious elastic stresses and residual stresses. The deduced problem is solved by a basis reduction
technique5, 13, 16 in the residual stress space and by Sequential Quadratic Programming (SQP).
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3.3 Plate with mismatched weld and a centered crack under tension

One half of the thick plate (plane strain) with mismatched weld has the length L = 40mm,
the width W = 4mm, the crack length a = 2mm, the thickness B and the weld height h =
1.2mm (see Fig. 2). The different strength data of the base material and the weld material
are represented by different yield stresses σB

y and σW
y , respectively. The main parameter is the

mismatch ratio M = σW
y /σB

y of yield stress values of base and weld material. A reference
value σB

y = 100MPa of the yield stress is chosen. The example was proposed by the EU-
project SINTAP15 as a benchmark for the Brite-EuRam project LISA: FEM-Based Limit and
Shakedown Analysis for Design and Integrity Assessment in European Industry14 (Project N◦:
BE 97-4547).

Lh

W

a

Figure 2: FE mesh

There is a well known exact plane stress limit load Fyb for the situation M = σW
y /σB

y = 1.
Estimation of the corresponding plane strain limit load yields the values

plain stress : Fyb = 2B(W − a)σB
y plain strain : Fyb =

4√
3
B(W − a)σB

y (12)

Then the applied line load is 50MPa and 57.74MPa, respectively. Approximations for limit
load Fym are known11 for plain stress and strain state. The plane strain results of the direct
lower bound FEM approach (using triangular elements) are given in table 1.

Plate with a centered crack in a mismatched weld under tension
M = σW

y /σB
y 0.50 0.75 1.00 1.25 1.50

analytic solution11 32.33 47.92 57.74 65.82 73.33

lower bound FEM 33.16 49.74 60.38 68.21 75.55

Table 1: Comparison of plane strain limit analysis results

In Fig. 3(a) and (b) analytical and numerical results for plane stress are compared. The limit
load is calculated for different values of mismatch factor M = σW

y /σB
y . For undermatching the
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Figure 3: Comparison of numerical and analytical results of limit load for different crack length and mismatch
factor M = σW

y /σB
y for plane stress, h/W = 0.3

numerical and analytical results in Fig.3(b) are in good agreement (at most 2 % error). In low
overmatching case the numerical results differ from the analytical results at most by 4 %.

In the overmatched case the plate fails by the joined plastified regions in the base and the
weld material. In the undermatched case the plate fails by plastification of the ligament in the
weld, so that the limit load is dominated by the yield stress of the weld material8, 14 σW

y .

4 IMPLEMENTATION AND TEST OF RELIABILITY ANALYSIS

4.1 Implementation

The present contribution uses lower bound theorems of limit and shakedown load to define
a limit state function g(X) for reliability analysis by FORM. R and S are respectively defined
by the limit or shakedown load factor and the applied load factor. The commercial general
purpose FEM code PERMAS10 is used for discretization. The resulting large-scale optimization
problem is transferred to a relatively small one by using a basis reduction method13, 16.

The solution of the limit load or of shakedown analysis (10) is a linear function of the failure
stress σy or σu if a homogeneous material distribution is assumed. If the structure has a hetero-
geneous material distribution, we obtain eventually different failure stresses σy(xi) or σu(xi)
in different Gaussian points xi. Then the limit load is no more a linear function of the failure
stresses. In this case the derivates of the limit state function may not be computed directly from
the linear function of the failure stresses. The Lagrange multipliers of the optimization problem
(10) yield the gradient information of g(X) without any extra computation. This is derived from
a distribution theory5 of σu(xi) as the right hand side of (10).

It is most important for the analysis under uncertainty that limit and shakedown analyses are
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based on a minimum of information concerning the constitutive equations and the load history.
This reduces the costs of the collection of statistical data and the need to introduce stochastic
models to compensate the lack of data. Due to the so-called tail sensitivity problem there is
generally insufficient data to analyze structures of high reliability which are e.g. employed
in nuclear reactor technology. Probabilistic limit and shakedown analyses were pioneered in
Italy1. Further work seemed to remain restricted to stochastic limit analysis of frames based
on linear programming2. The present contribution extends plastic reliability analysis towards
nonlinear programming, shakedown, and a general purpose large-scale FEM approach.

∂g/   u g/   x∂ ∂= ∂ ∂

α

x/   u

and Shakedown Analysis 

∂ /   x∂ ∂ /   x∂αload

αlimitg(x) =         - αload

αlimit αload

Pfailure

limit ∂ ∂x/   u

∂
FORM-Algorithm

Limit State Function

Deterministic 
FEM-Data

Stochastic 
Model, Data, Variables x

Failure Probability

,

FEM- based Limit

Figure 4: Flowchart of the probabilistic limit load analysis

4.2 Pipe-junction subjected to internal pressure

The pipe-junction13 under internal pressure p is taken from the collection of PERMAS test
examples. It is discretized with 125 solid 27-node hexahedron elements (HEXEC27). The
FE-mesh and the essential dimensions of the pipe-junction are represented in Fig. 5. The
internal pressure at first yield in the symmetry plane at the inner nozzle corner is calculated
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to pelastic ≈ 0.0476σy. For comparison13 the limit pressure resulting from the German design
rules AD-Merkblatt B9 is calculated to plimit = 2.85pelastic. With the safety factor 1.5 the
design pressure is pdesign = 1.9pelastic = 0.0904σy.
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Figure 5: FE-mesh and dimension of a pipe-junction

Numerical limit analysis leads to a collapse pressure of 0.134σy. In shakedown analysis the
system is subjected to an internal pressure which may vary between zero and a maximum mag-
nitude. The analysis becomes stationary after only 2 iteration steps with the shakedown pressure
pSD = 0.0952σy. The shakedown pressure is twice the elastic pressure in good correspondence
with an analytic solution5.

Thus the limit and the shakedown load are linearly dependent of the realization σy of the
yield stress, which is the basis variable X . The second basis variable Y is the increasing inner
pressure P . The limit load Plim of every realization y of Y is

Plim(y) = 0.134y. (13)

Obviously, Plim takes the role of a resistance R and P is the loading variable S. The limit
state function is defined by

g(x, y) = Plim − P = 0.134y − x. (14)

The normally distributed random variables X and Y with means µx, µx and standard devia-
tions σx, σy, respectively, yield with x = σx ux + µx and y = σy uy + µy the transformation

g(x, y) = (0.134µy − µx) + 0.134σyuy − σxux. (15)

With the new random variable U with realizations u = (ux, uy)
T , it holds:

g(u) =
(−σx, 0.134σy)√
σ2

x + 0.1342σ2
y

u +
0.134µy − µx√
σ2

x + 0.1342σ2
y

, (16)
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such that the safety index β of the random variable U is

β =
0.134µy − µx√
σ2

x + 0.1342σ2
y

=
0.134µy − µx√
σ2

x + 0.018σ2
y

(17)

In Figure 6 the numerical results of the shakedown analysis are compared with the analytic
values resulting from the exact solution. The results are normalized to the mean values µx and
µy of the corresponding distributions. Both variables are normally distributed with standard
deviations σx = 0.1µx and σy = 0.1µy.
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Figure 6: Comparison of numerical with analytical results for σx = 0.1µx, σy = 0.1µy

The results correspond well with the analytic results and demonstrate that reliability analysis
can be performed for realistic model sizes at very low computing times compared to incremental
analyses. Note, that the latter cannot be used in a quantitative comparison because incremental
nonlinear analysis fails to give a sharp evidence for plastic failure.
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Limit analysis Shakedown analysis
P/σy Pf (numer.) Pf (anal.) Pf (numer.) Pf (anal.)
0.03 1.8653E-14 1.8135E-14 3.4294E-11 3.2430E-11
0.04 1.1458E-11 8.9725E-12 4.7844E-08 4.5052E-08
0.05 2.2948E-09 2.1383E-09 1.3919E-05 1.3145E-05
0.06 2.5188E-07 2.3252E-07 9.2428E-04 8.7985E-04
0.07 1.2282E-05 1.1513E-05 1.7126E-02 1.6478E-02
0.08 2.7486E-04 2.6997E-04 1.1388E-01 1.1078E-01
0.09 3.3817E-03 3.2069E-03 3.5179E-01 3.4571E-01
0.0952 9.6429E-03 9.1261E-03 5.0654E-01 5.0000E-01
0.1 2.2190E-02 2.1001E-02 6.4212E-01 6.3594E-01
0.11 8.3328E-02 8.3125E-02 8.4933E-01 8.4550E-01
0.12 2.2510E-01 2.1819E-01 9.4897E-01 9.4728E-01
0.13 4.2411E-01 4.1517E-01 9.8519E-01 9.8460E-01
0.134 5.0892E-01 5.0000E-01 9.9113E-01 9.9087E-01
0.14 6.3079E-01 6.2157E-01 9.9610E-01 9.9592E-01
0.15 7.8917E-01 7.8683E-01 9.9902E-01 9.9898E-01
0.16 9.0053E-01 8.9358E-01 9.9976E-01 9.9974E-01

Table 2: Comparison of numerical and analytical results for σx = 0.1µx, σy = 0.1µy

5 CONCLUSIONS

Limit and shakedown theorems of plastic structural failure provide unique definitions of limit
state functions. In combination with FEM and with FORM, failure probabilities of passive
components are obtained with sufficient precision from a minimum of stochastic data at low
computational efforts. Sensitivities need no extra FEM analysis. The remaining numerical
error may be estimated or reduced by the additional use of upper bound theorems. Further
research is also addressed to more realistic material modeling including two-surface plasticity
and continuum damage.
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