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Abstract: Wind energy represents the dominant share of renewable energies. The rotor blades of a
wind turbine are typically made from composite material, which withstands high forces during rota-
tion. The huge dimensions of the rotor blades complicate the inspection processes in manufacturing.
The automation of inspection processes has a great potential to increase the overall productivity and
to create a consistent reliable database for each individual rotor blade. The focus of this paper is set
on the process of rotor blade inspection automation by utilizing an autonomous mobile manipulator.
The main innovations include a novel path planning strategy for zone-based navigation, which
enables an intuitive right-hand or left-hand driving behavior in a shared human–robot workspace.
In addition, we introduce a new method for surface orthogonal motion planning in connection
with large-scale structures. An overall execution strategy controls the navigation and manipulation
processes of the long-running inspection task. The implemented concepts are evaluated in simulation
and applied in a real-use case including the tip of a rotor blade form.

Keywords: mobile manipulation; large-scale inspection; wind turbine production; autonomous
navigation; surface-orthogonal path planning; intelligent robot; flexible production

1. Introduction

Wind energy has gradually taken the dominant share of renewable energies. The
worldwide capacity increased from 7600 MW in 1998 to 93 GW in 2020 [1]. The main
components of a wind turbine are: a rotor equipped with wing-shaped blades, a nacelle
that houses a drive train, and a tower [2]. The rotor blades transform the wind energy into
rotary energy and must be lightweight, robust, and long-lasting. Therefore, they are made
from composite materials, such as glass or carbon fiber material with a resin-like epoxy.
During rotation, extremely high forces affect the blades. Therefore, it is important to avoid
imperfections during the manufacturing process.

In the production of glass fiber reinforced structural components, the fiber structure
is fixed by enclosing laid semi-finished glass fibers with a resin matrix [3]. Imperfections
in the alignment of the structure or during the fiber reinforcement change the structural
properties and thus reduce the quality of the composite material. Currently, such imper-
fections are detected with help of ultrasonic [4,5], thermal [6,7], or radar [8,9] techniques,
whereby a differentiation has to be made in pre- and post-resin-injection inspections. If
an imperfection is detected after the resin injection, no corrections are possible, and the
component is, therefore, a reject. In research, radar imaging has gained a lot of attention for
inspection tasks of fiber composite material. In contrast to other methods based on x -rays,
thermal imaging, or ultrasonic imaging, radar imaging is non-invasive and provides a high
resolution combined with a high penetration depth [10]. Millimeter wave radar scans can
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be used to generate a detailed layer-by-layer visualization of a rotor blade [9]. Therefore,
it is possible to locate imperfections in 3D. However, the underlying algorithms for the
3D reconstruction require a surface orthogonal sensor alignment and a low measurement
uncertainty of the sensor pose during the scanning process. These requirements exclude a
manual execution with handheld devices.

Figure 1 shows a schematic of the manufacturing of a rotor blade, including the two
main components: aeroshells and shear webs. The typical diameter of a wind turbine
rotor, including the blades, has increased from 54 m (2005) to 158 m (2017) for onshore
and from 76 m (2005) to 164 m (2015) for offshore installations [11]. The huge dimensions
of the rotor blades complicate the inspection processes, which is why they are mostly
performed manually by human workers. The automation of the inspection processes
has great potential to increase the overall productivity and to create a consistent reliable
database for each individual rotor blade. Such an automation approach must be large-
scaled and flexible to cover the high variety of rotor blade dimensions.
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portance for manual labor-dominated production types. One of the first AIMMs was in-
troduced in 1984: MORO [14]. MORO was capable of navigating on the shopfloor and 
executing pick and place tasks. Based on this pioneering work, many further develop-
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developments in the area of inspection robots, our approach focuses on the motion plan-
ning addressing the surface orthogonal sensor alignment and the special requirements of 
a shared human–robot workspace in an industrial context.  

Therefore, we make use of the AIMM OMNIVIL [29]. OMNIVIL consists of a self-
built mobile platform. The mobile platform was designed to address the needs in a dy-
namic production environment, such as positioning, accuracy, and maneuverability. 
Therefore, the platform is based on four Mecanum wheels [30], whereby a pivoting axle 
guarantees continuous ground contact. The collaborative manipulator UR5 is mounted on 
top of the mobile platform. The sensor concept includes various sensor types to perceive 
the environment and the internal state of the robot. The workspace monitoring concept 

Figure 1. Schematic of the manufacturing of a wind turbine blade [12].

An autonomous industrial mobile manipulator (AIMM) [13] combines the flexibility of
an industrial robot arm (manipulator) with the mobility of an autonomous mobile robot
(AMR). Equipped with various sensors, AIMMs are capable of autonomous navigation,
even in dynamic and large-scale production environments. Furthermore, the perceived data
can be used to realize a shared human–robot workspace, which is of particular importance
for manual labor-dominated production types. One of the first AIMMs was introduced in
1984: MORO [14]. MORO was capable of navigating on the shopfloor and executing pick
and place tasks. Based on this pioneering work, many further developments were carried
out, focusing on different industrial applications: part feeding [15–17], transportation
and assembly [18–20], as well as large-space manufacturing [21–23]. In recent years,
inspection robots have become more present in different domains, such as the oil and gas
industry [24,25], the power industry [26,27], and civil infrastructure [28]. Therefore, the idea
to utilize an AIMM for inspection tasks is obvious. In contrast to recent developments in
the area of inspection robots, our approach focuses on the motion planning addressing the
surface orthogonal sensor alignment and the special requirements of a shared human–robot
workspace in an industrial context.

Therefore, we make use of the AIMM OMNIVIL [29]. OMNIVIL consists of a self-built
mobile platform. The mobile platform was designed to address the needs in a dynamic
production environment, such as positioning, accuracy, and maneuverability. Therefore,
the platform is based on four Mecanum wheels [30], whereby a pivoting axle guarantees
continuous ground contact. The collaborative manipulator UR5 is mounted on top of
the mobile platform. The sensor concept includes various sensor types to perceive the
environment and the internal state of the robot. The workspace monitoring concept
and the localization and positioning capabilities of the mobile platform were evaluated in
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various experiments ranging from static to highly dynamic scenarios [29]. The collaborative
manipulator is equipped with an RGB-D camera (Intel-RealSense 435) and a radar module
that works at 80 GHz with a 24 GHz bandwidth. Figure 2 shows the AIMM OMNIVIL.
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In this paper, we present an automated inspection process for wind turbine rotor blade
manufacturing executed by the AIMM OMNIVIL. The focus is set on the robot control
setup rather than the composite material analysis. Therefore, this work addresses motion
planning, environmental perception, and the human–robot interaction. The following
strategies are implemented towards a fully autonomous inspection of a rotor blade: (1) a
novel path planning strategy for a zone-based navigation concept that enables an intuitive
right or left driving behavior of the mobile platform without limiting the planning based
navigation; (2) a novel method for surface orthogonal motion planning in connection with
large scale structures; (3) therefore, the large-scale structures are divided into feasible
subparts based on a workspace analysis, including the reachability and manipulability
of the manipulator; (4) an overall execution strategy that controls the corresponding
navigation and manipulation processes of the long-running inspection task.

The rest of the paper is structured as follows. Section 2 presents the control system,
including the zone-based segmentation of the production environment, the path planning
strategy, and the surface orthogonal motion planning. In Section 3, two experiments are
carried out to validate the path planning strategy and the overall execution of the rotor
blade inspection. Section 4 concludes the paper.

2. Robot Control System
2.1. Zone-Based Segmentation of the Production Environment

The general concept of zone-based navigation is inspired by zone management within
an industrial production environment. The approach is based on virtual navigation
zones [29]. Instead of using infrastructural markers, the zones can be defined in a given
map by using 2D polygons. For each zone, a predefined robot behavior can be set with
different parameter settings for maximum velocity, maximum acceleration, goal tolerance,
warning indicators (visual and acoustic), or even different kinematic models reaching from
the differential to holonomic models.

For instance, Figure 3a shows a zone-based segmentation of a 60 × 60 m production
environment. The coloring represents the different cost levels of the zones ranging from
green (minimum cost value) to red (maximum cost value). In Figure 3b, the zones are
colored with an individual color for each zone. Figure 3c shows the corresponding lay-
ered costmap [31] configuration in hierarchical order. The ordering of the layers allows
modulating the costs by overwriting them only when and where required.
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The standard configuration of a layered costmap configuration includes a static, an
obstacle, and an obstacle inflation layer. This default configuration does not fulfil the
requirements of a dynamic production environment, including different manufacturing
and transportation zones as well as a shared human–robot workspace. The implemented
approach is based on the concept of layered costmaps described in [32], whereby each layer
tracks the data to a specific functionality. With the cost value Ωi

xy = {0, 1, . . . , 254, 255} for
a cell ci

xy at position Pc
j =

(
xj, yj

)
, the layer i contributes to the Master costmap as follows:

The Static layer contributes to the master costmap by analyzing an a priori created 2D
occupancy grid map G. The layer provides information about free and occupied spaces in
the production environment by Equation (1):

Ω1
xy =


0, G(x, y) == Free

254, G(x, y) == Occupied
255, G(x, y) == NoIn f ormation

(1)

with Free, Occupied, and NoInformation reflecting the related values of the occupancy grid
map implementation.

The Zone layers, Corridor (2), Restricted (3), Station (4), and Prohibition (5), contribute
to the zone-based navigation layout of the production environment. The dimensions of the
zones are provided in form of a polygon list. The corridor zone should be the preferred
zone for the implemented path planner; therefore, the cost value of the corresponding cells
is set to a small value of Ω2

xy = 10. The robot is allowed to enter restriction zones, but
only if necessary. Therefore, the cost value for the corresponding cells is set to Ω3

xy = 100.
The same condition applies to the station zones. Since a motion of the robot through a
restriction zone is from higher preference than a motion through a station zone, the cost
value of the corresponding cells is set to Ω4

xy = 120. The robot is not allowed to enter a
prohibition zone; therefore, the cost value of the corresponding cells is set to Ω5

xy = 250.
The Guard Rail layer is based on the inflation layer described in [32]. Originally, the

inflation layer was designed to create a buffer zone around lethal obstacles to avoid the
robot coming too close to the obstacles. We applied that method to define a buffer zone
at the borders of the corridor zones. The robot uses these guard rail zones as a guide
for navigating inside the corridor zones. The robot will navigate with a high preference
alongside the edge between the guard rail zone and the corridor zone. The developed
method is further explained in Section 2.2. The inflation radius is adjustable and defines
the width of the guard rail zone. The corresponding cells are set to the cost value Ω6

xy = 12.
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The Human layer contributes the information of a multilayer and redundant workspace
monitoring system (WMS) described in [29]. The WMS uses RGB and thermal images
as well as Lidar data. The multilayer sensor setup is improved by the implementation
of redundant algorithms for human co-worker detection based on neural networks. The
fused confidence intervals between 0 and 1 are provided as a 2D heatmap in form of an
occupancy grid map. The corresponding cells in the costmap M are called human cells
and assigned with the cost value Ω7

xy = 200. A threshold of 0.5 is used for the confidence
level to neglect low confidence detections. An area with an adjustable radius around each
human cell is defined as a human safety zone. The Human layer calculates the Euclidean
distance between the current robot position and each human cell to determine if the robot
is inside a human safety zone. Following the concept of the navigation zones, the robot will
preventively change its motion behavior if it is inside a human safety zone. In addition, the
human cells are inflated to create a buffer zone around the human co-workers. The radius
of these buffer zones is smaller compared to the human safety zones. The cost value of the
corresponding cells is set to Ω7

xy = 200. Theoretically, the robot is allowed to plan close
to a human, but it is highly cost inefficient. Figure 4 shows an exemplary scenario of an
occupancy grid map provided by the WMS and the resulting costmap, including the buffer
zones in blue and one visualized human safety zone in red.
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The Obstacle layer tracks the data from the 2D Lidar sensors. The Lidar data is
provided in form of an array S, including the sensor readings. The sensor readings are
converted into the costmap space to determine the corresponding cells. Analog to the Static
layer, the obstacle layer contributes to the master layer by following Equation (2).

Ω8
xy =


0, MLidar(x, y) == Free

254, MLidar(x, y) == Occupied
255, MLidar(x, y) == NoIn f ormation

, (2)

where MLidar is the sensor readings in the costmap space. The Obstacle Inflation layer adds
an adjustable buffer zone around the obstacle. Therefore, the distance between the obstacle
and the planned path is increased.

2.2. Cost Adaption Based on Search Expansion Direction

Common industrial navigation concepts are based on line following strategies [33]
using passive [34] or active [35] landmark detection. These methods are approved in in-
dustrial environments, but not as flexible as desired. The well-known planning algorithms
A* [36] or Dijkstra [37] provide the most cost-efficient path available from a start position
to a goal position, given a costmap. The presented navigation concept segments the pro-
duction environment in zones of different cost levels. The resulting costmap is provided
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to the path planner, resulting in a high preference for the corridor zone, without limiting
the robot in the manner of a line follower. However, a line follower behavior is socially
desirable for the corridor zone. This is particularly true for a shared human–robot produc-
tion environment. In [38], the cell costs were slightly reduced for cells on the right side of a
corridor. As a result, the pass speed of the human and the robot was significantly increased
which indicates an optimized human–robot collaboration. The social behavior of right or
left driving is widely used in public and industrial environments. Such a predictable and
intuitive behavior of the robot is a key feature for beneficial human–robot cooperation.

Instead of manipulating the costs before the actual planning process, our approach
is applied while planning and takes the expansion direction of the planning algorithm
into concern. As a result, the desired left or right driving behavior can be applied to any
zone and in any direction. The aim is that the global planner prefers a path right next to
the previously mentioned guard rail zone. This behavior is comparable to a line follower,
without limiting the robot to a particular line motion. Figure 5 shows a horizontal and a
vertical example scenario of a planning procedure in a grid-based costmap.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 22 
 

2.2. Cost Adaption Based on Search Expansion Direction 
Common industrial navigation concepts are based on line following strategies [33] 

using passive [34] or active [35] landmark detection. These methods are approved in in-
dustrial environments, but not as flexible as desired. The well-known planning algorithms 
A* [36] or Dijkstra [37] provide the most cost-efficient path available from a start position 
to a goal position, given a costmap. The presented navigation concept segments the pro-
duction environment in zones of different cost levels. The resulting costmap is provided 
to the path planner, resulting in a high preference for the corridor zone, without limiting 
the robot in the manner of a line follower. However, a line follower behavior is socially 
desirable for the corridor zone. This is particularly true for a shared human–robot pro-
duction environment. In [38], the cell costs were slightly reduced for cells on the right side 
of a corridor. As a result, the pass speed of the human and the robot was significantly 
increased which indicates an optimized human–robot collaboration. The social behavior 
of right or left driving is widely used in public and industrial environments. Such a pre-
dictable and intuitive behavior of the robot is a key feature for beneficial human–robot 
cooperation.  

Instead of manipulating the costs before the actual planning process, our approach 
is applied while planning and takes the expansion direction of the planning algorithm 
into concern. As a result, the desired left or right driving behavior can be applied to any 
zone and in any direction. The aim is that the global planner prefers a path right next to 
the previously mentioned guard rail zone. This behavior is comparable to a line follower, 
without limiting the robot to a particular line motion. Figure 5 shows a horizontal and a 
vertical example scenario of a planning procedure in a grid-based costmap. 

 
Figure 5. Exemplary planning scenario. (a) Horizontal; (b) vertical. 

The start cell for the planning procedure is set to the middle of the corridor zone. 
During the search for a valid path, a check is performed for each expanded cell of the 
corridor zone; if the cell is a neighbor of the guard rail zone, the cell is called a cell of 
interest. Each cell of interest can be either declared as a left-hand or right-hand driving 
cell. The cell type is determined by taking the expansion direction of the search algorithm 
into concern. The expansion direction can only be determined if a neighbored cell of in-
terest exists. In Figure 5a, the cells at positions (7,4) and (9,8) are right-hand driving cells. 
The expansion direction is visualized with a red arrow. The cells at positions (9,4) and 
(7,8) are left-hand driving cells. The cells at (8,4) and (8,8) do not feature a specific type, 
since they had no neighbored cell of interest when they were expanded. In Figure 5b, the 
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The start cell for the planning procedure is set to the middle of the corridor zone.
During the search for a valid path, a check is performed for each expanded cell of the
corridor zone; if the cell is a neighbor of the guard rail zone, the cell is called a cell of
interest. Each cell of interest can be either declared as a left-hand or right-hand driving cell.
The cell type is determined by taking the expansion direction of the search algorithm into
concern. The expansion direction can only be determined if a neighbored cell of interest
exists. In Figure 5a, the cells at positions (7,4) and (9,8) are right-hand driving cells. The
expansion direction is visualized with a red arrow. The cells at positions (9,4) and (7,8) are
left-hand driving cells. The cells at (8,4) and (8,8) do not feature a specific type, since they
had no neighbored cell of interest when they were expanded. In Figure 5b, the cells at (5,7)
and (11,5) are right-hand driving cells. The cells at (5,5) and (11,7) are left-hand driving
cells, and the cells at (5,6) and (11,6) of no type.

During search expansion the path potential is stored in form of a grid-based potential
map Φ. The potential map Φ holds the information for each expanded cell of how much
it costs to reach that cell from the start cell. Cells that are not expanded yet, are set to a
clearly identifiable default value ϕ. Algorithm 1 shows our approach applied to realize a
right-hand driving behavior.
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Algorithm 1. Calculation of Potential Map for right-hand Driving

1: function calculateCellPotential(cell c, costmap M, potential_map Φ)
2: if c is not inside the corridor zone then
3: Φ(c.x, c.y) = calculateCostsToReachCell(c, M, Φ)
4: end if
5: if M(c.x, c.y− 1) equal cost of GuardRailZone and Φ(c.x + 1, c.y) not equal ϕ then
6: Φ(c.x, c.y) = Φ(c.x + 1, c.y) + corridor_cell_cost/4
7: else if M(c.x, c.y + 1) equal cost of GuardRailZone and Φ(c.x− 1, c.y) not equal ϕ then
8: Φ(c.x, c.y) = Φ(c.x− 1, c.y) + corridor_cell_cost/4
9: else if M(c.x− 1, c.y) equal cost of GuardRailZone and Φ(c.x, c.y− 1) not equal ϕ then

10: Φ(c.x, c.y) = Φ(c.x, c.y− 1) + corridor_cell_cost/4
11: else if M(c.x + 1, c.y) equal cost of GuardRailZone and Φ(c.x, c.y + 1) not equal ϕ then
12: Φ(c.x, c.y) = Φ(c.x, c.y + 1) + corridor_cell_cost/4
13: else
14: Φ(c.x, c.y) = calculateCostsToReachCell(c, M, Φ)
14: end if
15: end function

In this example, the right-hand driving behavior is applied to the corridor zone. The
function calculateCostsToReachCell symbolizes the standard calculation of an expanded cell
in the potential map, as shown in Equation (3):

potential = Φ
(
cprev.x, cprev.y

)
+ M

(
cexp.x, cexp.y

)
+ Ωmv, (3)

where cexp is the expanded cell, cprev is the previous cell, and Ωmv is the cost value to move
from one cell to a neighboring cell. The function is triggered in case the expanded cell is
not part of the corridor zone or the expanded cell is not determined as a right-hand driving
cell. Therefore, in these cases, the default behaviors of the global planners are not changed.

If the expanded cell is part of a corridor zone and neighbors a guard rail zone, the cell
is of interest and further analyzed. Four cases are differentiated:

1. The guard rail zone is a neighbor in the negative y-direction in the costmap;
2. The guard rail zone is a neighbor in the positive y-direction in the costmap;
3. The guard rail zone is a neighbor in the negative x-direction in the costmap; or
4. The guard rail zone is a neighbor in the positive x-direction in the costmap.

Depending on the relative position of the expanded cell in relation to the guard rail
zone and the already expanded cells stored in the potential P, the cell is defined as a
right-hand driving cell. In the case of a right-hand driving cell, the calculation of the cell
potential is changed from Equation (3). The applied formula is shown in Equation (4):

potential = Φ(xi, yi) + MCorridor / 4 (4)

The coordinates xi, yi, with i = {1, 2, 3, 4}, reflect the above mentioned four cases.
MCorridor is the cost value of a cell inside the corridor zone.

The presented approach can be applied to any zone in any direction, as long as a
particular cost gradient is present between the zone and the guard rail zone. Figure 6
shows an example scenario for a large-scale planning scenario in a simulated production
environment. The red dot represents the start position and the green dot the goal position.
The costmap is divided into navigation zones according to Section 2.1. Figure 6a shows the
default behavior of the implemented A* planner. As desired, the resulting path is mostly
located inside the corridor zone. Figure 6b shows the resulting right driving behavior by
applying our approach.
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2.3. Large-Scale Surface Orthogonal Motion Planning

The addressed inspection task requires a high positioning accuracy of the radar
module (<200 µm) in reference to the workpiece frame for each scan process. Therefore,
the large-scale inspection task is executed in asynchronous mobile manipulation mode.
The workpiece is divided into smaller subsegments, which can be inspected standalone
with the motion capabilities of the manipulator. At each subsegment, the following process
steps are performed:

1. Surface reconstruction;
2. Sensor waypoint generation;
3. Motion planning.

The approached positions of the mobile platform are determined by analyzing the
reachability of the manipulator in its workspace and segmenting the workpiece accordingly.

2.3.1. Surface Reconstruction

To plan a path on a surface, the geometrical shape of the surface must be known.
Especially for inspection tasks, it cannot be assumed that the actual state of the workpiece
still corresponds to its computer-aided design (CAD) data. In our implementation, the
surface is reconstructed from a point cloud using the Point Cloud Library [39] (PCL). The
point cloud is provided by the RGB-D camera at the end effector of the manipulator. In
the first step, the point cloud is down-sampled, and then the surface is reconstructed by
applying B-spline fitting [40]. Figure 7 shows the reconstructed surface of an exemplary
rotor blade segment.
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Figure 7. Surface reconstruction. (a) Dense point cloud of a rotor blade segment; (b) point cloud after down-sampling;
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2.3.2. Waypoint Generation

The surface orthogonal motion planning is inspired by the approach presented in [41],
which addresses an inspection task of a landscape with an unmanned aerial vehicle (UAV).
For this purpose, the landscape is rasterized into a grid. The grid resolution depends on the
technical parameters of the sensor, the desired image resolution, and the desired overlaps
of the individual images. The centers of the grid cells are shifted along the normal of the
ground surface. This approach was adapted for the creation of 6D waypoints, representing
surface orthogonal 6D poses of the radar sensor. Figure 8 shows the three steps of the
implemented waypoint generation method, applied to the reconstructed surface of Figure 7.
Figure 8a shows the centers of the grid cells. These are projected onto the reconstructed
surface (see Figure 8b). The projected centers are shifted along the surface normal to the
desired distance from the surface. The z-axis of the 6D waypoints are aligned with the
negative surface normals (see Figure 8c).
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2.3.3. Path Planning

The 6D waypoints can be considered as nodes in a complete graph. A Hamiltonian
cycle [42] in this graph visits all waypoints. The search for the shortest Hamiltonian cycle
in a complete and weighted graph is called the traveling salesman problem (TSP). This
problem is NP-complete, and there is no known efficient algorithm to solve it [43]. One
approximation approach is the algorithm according to Christofides [44]. The implemented
approach is shown in Algorithm 2.
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Algorithm 2. Factor 3/2 approximation of the travelling salesman problem

1: function approximateTSP(Graph G, costfunction Ω)
2: choose a root node r ε V(G) as base v
3: calculate the minimum spanning tree T for G with MST − Prim(G, Ω, r)
4: calculate the perfect matching with minimum weight m for odd v ε V(G)
5: add E(m) to T
6: determine the Euler cycle Γ in m + T
7: the Hamiltonian cycle H is the ordered list of nodes visited on Γ, multiple nodes are skipped
8: return H
9: end function

The path length is limited to a maximum of one and a half times the optimal solution.
The algorithm first calculates a minimum spanning tree [43] (MST). A minimum perfect
match is formed between the nodes of the MST with an odd degree. This is possible
because there is always an even number of nodes with an odd degree. In the path planning
implementation, the Blossom-V implementation from [45] is used for this purpose. The
edges of the matching are added to the MST, such that the degree of all nodes is even.
Thus, a Euler cycle can be formed in the graph. By truncation, i.e., deleting multiple visited
nodes, the approximate solution of the TSP is formed.

2.3.4. Positioning of the Mobile Platform

The mobile platform must be positioned in such a way that the surface orthogonal
planned path of the end effector lies in a workspace region with high reachability. The
method used to determine the characteristics of the manipulator’s workspace is described
in [29]. The size of the chosen suitable area of the manipulator workspace directly affects
the segmentation of the workpiece in local subsegments.

The workpiece segmentation consists of the following steps:

1. Create the scanning grid accordingly to the workpiece size (see Figure 9a);
2. Project the scanning grid onto the surface of the workpiece (see Figure 9b);
3. Reflect the projected points alongside the surface normal (see Figure 9c); and
4. Cluster the reflected points into processable local scan areas (see Figure 9d).
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The reflected points represent positions of the manipulator’s end-effector. The aim
of the workpiece segmentation is to find a set of neighbored projected points, whereby
the corresponding reflected points are inside the defined workspace of the manipulator.
Therefore, a list of position tuples ΛPR is created, whereby each tuple consists of a projected
point and the corresponding reflected point. By continuously expanding in the domain of
the projected points and checking the reachability of the corresponding reflected points,
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the tuples of list ΛPR are clustered into suitable local scan areas. The implemented method
is described in detail in Algorithm 3.

Algorithm 3. Segmentation of the workpiece into subsegments

1: function segmentWorkpiece(CADModel Ψ, Workspace Y, Distance d, ClusterList ΛPR)
2: create sampling grid S accordingly to 3D bounding box size of Ψ
3: project grid points si ε S onto surface of Ψ
4: reflect projected points alongside the corresponding surface normal to distance d from surface of Ψ
5: create a list LPR with corresponding pairs of projected and reflected points
6: ascendingly order LPR based on Euclidean distance between projected point and workpiece frame I
7: while LPR not empty do
8: initialize empty cluster CPR
9: add position pair at first position of LPR to CPR and remove pair from LPR

11: initialize filter dimensions
12: set current search direction to Ix-direction
13: while not all search directions are exhausted do
14: extend filter in search direction
15: if filter dimension is beyond the bounding box of Ψ then
16: mark current search direction as exhausted
17: reset filter dimensions
18: end if
19: find all position pairs Li in LPR where the reflected point is inside filter bounds
20: calculate bounding box dimension B of all reflected points ε Li
21: if B ⊆ Y then
22: add Li to CPR and delete Li from LPR
23: else
24: reset filter dimension
25: mark search direction as exhausted
26: end if
27: switch search direction
28: end while
29: add CPR to ΛPR
30: end while
31: end function

The mobile platform is positioned in such a way that the center of the calculated
scan area li = (xI , yI)

T is located at the center of the system’s reachable workspace
ri = (xR, yR)

T . Therefore, the centers ci are translated alongside the x-axes of the workpiece
coordinate system I. Depending on the approach direction of the mobile platform, the
translation is performed in x+- or x−-direction. The shifted positions l∗i are converted
into 2D poses Li = (xI , yI , θI)

T by adding an orientation accordingly to the translation
direction. The 2D poses are transformed into the world coordinate system W, resulting in
the required 2D goal poses for the navigation task.

2.4. Task Management

The inspection of a large-scale rotor blade is a long-running task. Therefore, we
designed a task management system in form of a nested state machine. The state machine
uses the SMACH framework [46]. The main state machine includes two nested state
machines managing the manipulation and the navigation task. Figure 10 shows the task
management system.
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The main state machine requires as input the model of the workpiece (CAD File), the
desired distance between the radar sensor and the surface of the workpiece (DistanceSR)
and the characteristics of the used manipulator (ManipulatorInfo). The ManipulatorInfo
consists of the suitable area of the manipulator workspace, including the corresponding
maximum reach of the manipulator.

The workpiece segmentation and the position determination of the platform at the
local scan subsegments is executed a priori. The workpiece segmentation provides the local
scan areas (ScanAreasInfo). Each ScanAreaInfo consists of the area center (ScanAreaCenter)
and the dimensions (ScanAreaDim) in reference to the workpiece coordinate system. The
platform positioning converts the centers of the local scan areas into 2D navigation goals
(PosesGoal) in reference to the world coordinate system.

The navigation and manipulation state machines are triggered sequentially for each
pair of navigation goal (PoseGoal) and local scan area (ScanAreaDim). The navigation state
machine takes care about the path planning and path execution processes. The move
base flex [47] framework is implemented to change between different motion behaviors of
the mobile platform depending on the current navigation zone. The manipulation state
machine is divided into three process steps. The point cloud executor gathers the point
cloud data at the local scan pose (PoseScan) and crops it accordingly to the dimensions of
the local scan area. The waypoint generator determines the 6D end-effector waypoints
(WaypointsEE), orthogonal oriented to the surface of the workpiece. The manipulation
executor controls the motion of the manipulator.

3. Experiments and Discussions
3.1. Production Environment Navigation

We evaluated the presented zone-based navigation concept in the multi-robot simula-
tor Gazebo [48]. Therefore, we created 10 different production environments of the size
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60 × 60 m. Each simulated production environment features an individual navigation zone
layout, comparable to the layout shown in Figure 6. In each simulated production environ-
ment, we defined 10 start-goal-position tuples, which resulted in a total of 100 tuples. The
tuples were divided into five groups:

• Tuples TRR from restricted-to-restricted zone;
• Tuples TSS from station-to-station zone;
• Tuples TSC from station-to-corridor zone;
• Tuples TCS from corridor-to-station zone;
• Tuples TCC from corridor-to-corridor zone.

The five groups are equally distributed across the 10 simulated environments, resulting
in two tuples for each group per environment.

For each tuple, we manually annotated the desired path Pi with i = {1, 2, . . . , 100}.
Each path Pi fulfills two criteria. The first one is the reduction in the overall costs of the path
by preferring the corridor zone. The second one respects the desired right-hand driving
behavior alongside the corner between the corridor zone and the guard rail zone.

The experiment compares the performance of the default A* and Dijkstra implementa-
tion of the robot operating system (ROS) [49] with our adapted version, later called A*zone
and Dijkstrazone.

The deviation between a planned path A and the corresponding manually annotated
path B ε Pi is represented by the average mean square error aMSE. The calculation is given
in Equation (5):

aMSE =
∑n

i=0 d2
i

n
, (5)

where di is the Euclidean distance between each of the n positions ai ε A and its closest
neighbored position bi ε B. Figure 11 shows the experimentally determined results for each
of the 10 simulated production environments averaged over all five start-goal-position
tuple groups.
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As expected, the aMSE is significantly higher for the default implementations of
A* and Dijkstra. This result is caused by the right-hand driving criteria of the manu-
ally annotated reference paths. In addition to the aMSE, we analyzed the following
performance parameters:

1. The required process time;
2. The number of expanded cells; and
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3. The path length.

The required process time indicates the additional computation effort caused by the
implementation of Algorithm 1. The number of expanded cells reflects the efficiency of
reaching the goal cell. The overall path length shows the additional path caused by the
desired right driving behavior. Table 1 shows the performance parameters averaged over
all 100 start-goal-position tuples.

Table 1. Comparison of the evaluated planning approaches. Performance parameters averaged over
100 start-goal-position tuples in 10 simulated environments.

Approach aMSE
[m]

Processing Time
[ms] Expanded Cells Path Length

[m]

A* 15.72 56.2 401,497 62.43
Dijkstra 13.78 53.3 596,325 62.22
A*zone 0.11 49.8 355,200 71.04

Dijkstrazone 0.06 49.1 545,255 72.84

The default implementations of A* and Dijkstra provide the most cost-efficient path.
The cost efficiency is mainly influenced by the cost levels of the different zones. Inside a
zone, the length of the path is the factor of influence. Therefore, the average path length
of the default implementations is approximately 14% smaller compared to our approach.
With an average aMSE of 0.11 m for A*zone and 0.06 m for Dijkstrazone, our approach
proved to provide consistent paths following the concept of right-hand driving.

The general difference in processing time between the approaches A*, A*zone and
Dijkstra, and Dijkstrazone is caused by the calculation of the heuristic. Therefore, the
average processing time for A*zone is 2.5% greater than that for Dijkstrazone, even though
the number of expanded cells is approximately 35% smaller.

The additional computation effort needed to determine the right-hand driving cells
at each expansion step does not increase the overall processing time. Quite the opposite,
the approach A*zone needs approximately 11% less average processing time. This decrease
correlates with the number of expanded cells, which is also approximately 11% smaller
than that of A*. The same applies to the approach Djikstrazone, which results in 9% less
expanded cells and a corresponding decrease in the overall processing time. Table 2 shows
a comparison of the five start-goal-position tuple groups by evaluating the number of
expanded cells normalized to the resulting path length for each tuple.

Table 2. The number of expanded cells normalized to the path length.

Approach TRR TSS TSC TCS TCC

A* 7643 9801 2836 8852 3298
Dijkstra 10,366 11,294 6261 11,663 6425
A*zone 6170 7745 1695 7963 1623

Dijkstrazone 8219 8818 4401 10,115 4496

The goal zone has a high impact on the efficiency of the evaluated path planners. If
the goal position lies within the corridor zone (TSC, TCC), the number of expanded cells is
significantly lower compared to a goal position outside the corridor zone (TRR, TSS, TCS),
by comparing columns TSC, TCC with other columns of Table 2. This behavior is caused
by the cost levels of the zones and the nature of the path planning algorithms. Since
the cost level of the corridor zone is relatively low the planners will expand inside the
corridor zone with a high preference, before starting to expand inside a restricted or station
zone. The A* and A*Zone implementations provide a lower number of expanded cells
for each paths group, as highlighted by the bold font in Table 2, which is caused by the
additional heuristic.
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Our right-hand driving approach results in an additional decrease in the number
of expanded cells. This is caused by the effect of our method on the behavior of the
path planning algorithms. Figure 12 shows a comparison of a path p ∈ TSC and the
corresponding expansion potentials for each of the evaluated approaches.
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The relatively low-cost cells at the edge between the corridor zone and the guard rail
zone let the path planning algorithms concentrate their expansion towards a particular
direction. Since the corridor zone is designed to connect typical station areas in the
industrial environment, our method reduces the number of cells that are expanded in the
corridor zone. Therefore, our method provides a higher expansion efficiency which results
in lower computational effort compared to standard implementations of Dijkstra or A*.

3.2. Evaluation in Real-World Use-Case

The presented concept is evaluated at a typical rotor blade form, which features a
length of 11 m. Due to space limitations of the experiment environment, only the tip of the
form is used throughout the experiment. Figure 13a shows the 3D model of the tip. The tip
has the dimensions 2.0 × 0.8 × 0.9 m3 (LxHxW). Figure 13b,c show the real-world form
equipped with glass fiber mats and a setup for vacuum generation.
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Figure 13. Rotor blade forms. (a) 3D model of the tip of the rotor blade form; (b) rotor blade form
used in the real-world experiment (side view); (c) rotor blade form used in the real-world experiment
(top view).

Figure 14a shows the analyzed workspace of the used Universal Robot UR5 displayed
as a cut in the x, y-plane of the manipulator coordinate frame R. Since the end-effector
will be downward oriented most of the time during inspection and accordingly to [29],
the used geometric primitive to analyze the workspace is a downward facing hemisphere.
Each analyzed voxel has the edge length of 50 mm. Figure 14b shows the same cut, with a
threshold at 50% reachability applied.
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The chosen suitable workspace area consists of two layers in z-direction to cover the
curved shape of the blade tip form. The area is shown in Figure 14c and of size: 0.45 m in
x-direction, 0.7 m in y-direction, and 0.1 m in z-direction of the coordinate system R.

In addition, the so-called max reach value maxreach of the mobile manipulator is
calculated. The maxreach symbolizes the maximum distance the manipulator is able to reach
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into the workpiece alongside the robot coordinate system R. The calculation is given in
Equation (6):

maxreach = DMW − (dRPF + dPFW), (6)

where DMW is the distance between the origin of R and the reachable voxel, which is
located at the maximum distance alongside the x-axis of R. The distances dRPF and dPFW
depend on the hardware setup and the minimum safety distance between the platform
and the workpiece. The distance dRPF describes the distance between the origin of R and
the front of the mobile platform. The distance dPFW describes the safety distance between
the front of the mobile platform and the workpiece.

Based on the method presented in Section 2.3.4, the workpiece is segmented in in-
spectable subsegments taking the maximum reach maxreach of the hardware setup into
account. Figure 15a shows the colored subsegments. Figure 15b shows the corresponding
poses of the mobile platform as black arrows for each subsegment. Figure 15c shows the
mobile manipulator executing the scan process at a subsegment of the work piece.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 22 
 

The chosen suitable workspace area consists of two layers in z-direction to cover the 
curved shape of the blade tip form. The area is shown in Figure 14c and of size: 0.45 m in 
x-direction, 0.7 m in y-direction, and 0.1 m in z-direction of the coordinate system 𝑅. 

In addition, the so-called max reach value 𝑚𝑎𝑥 of the mobile manipulator is cal-
culated. The 𝑚𝑎𝑥 symbolizes the maximum distance the manipulator is able to reach 
into the workpiece alongside the robot coordinate system 𝑅. The calculation is given in 
Equation (6): 𝑚𝑎𝑥 =  𝐷ெௐ − (𝑑ோி + 𝑑ிௐ), (6) 

where 𝐷ெௐ is the distance between the origin of 𝑅 and the reachable voxel, which is lo-
cated at the maximum distance alongside the x-axis of 𝑅. The distances 𝑑ோி and 𝑑ிௐ 
depend on the hardware setup and the minimum safety distance between the platform 
and the workpiece. The distance 𝑑ோி describes the distance between the origin of 𝑅 and 
the front of the mobile platform. The distance 𝑑ிௐ describes the safety distance between 
the front of the mobile platform and the workpiece. 

Based on the method presented in Section 2.3.4, the workpiece is segmented in in-
spectable subsegments taking the maximum reach 𝑚𝑎𝑥 of the hardware setup into 
account. Figure 15a shows the colored subsegments. Figure 15b shows the corresponding 
poses of the mobile platform as black arrows for each subsegment. Figure 15c shows the 
mobile manipulator executing the scan process at a subsegment of the work piece. 

 
Figure 15. Evaluation in a real use-case. (a) Work piece segmentation; (b) visualization of the navigation zone setup and 
the platform positioning; (c) actual execution of the scanning process. 

At each local subsegment, the surface reconstruction (cf. Section 2.3.1) is executed. 
Therefore, an RGB-D camera provides a point cloud of the work piece. A crop box filter 
removes all points, which are related to the ground or the robot itself. In the next step, a 
HSV filter is applied to the remaining points to remove points related to the yellow corner 
tape of the vacuum setup (cf. Figure 15c). The resulting point are clustered by their Eu-
clidean distance to determine the points belonging to the scanning surface. A down sam-
pled version of the resulting point cloud is used for the surface reconstruction. Figure 16 
shows the complete pipeline for a point cloud captured at a local subsegment. 

Figure 15. Evaluation in a real use-case. (a) Work piece segmentation; (b) visualization of the navigation zone setup and the
platform positioning; (c) actual execution of the scanning process.

At each local subsegment, the surface reconstruction (cf. Section 2.3.1) is executed.
Therefore, an RGB-D camera provides a point cloud of the work piece. A crop box filter
removes all points, which are related to the ground or the robot itself. In the next step,
a HSV filter is applied to the remaining points to remove points related to the yellow
corner tape of the vacuum setup (cf. Figure 15c). The resulting point are clustered by
their Euclidean distance to determine the points belonging to the scanning surface. A
down sampled version of the resulting point cloud is used for the surface reconstruction.
Figure 16 shows the complete pipeline for a point cloud captured at a local subsegment.

The waypoint generation (cf. Section 2.3.2) is based on the surface reconstruction.
Figure 17a shows the approached 3D positions of the end-effector in the robot coordinate
frame R during the inspection process of one local subsegment. Figure 17b shows the
surface-orthogonal orientation of the end-effector at each 3D position.
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The 3D positions of the end-effector are shifted alongside the calculated surface normal
by the amount of the chosen scanning height. The resulting 3D positions reflect the surface
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of the workpiece (see Figure 18a). Figure 18b shows the path of the end-effector during the
inspection process.
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Figure 18. Execution of inspection process at one local subsegment of the work piece. (a) 3D positions of the end-effector
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the inspection process.

The pose information of each local subsegment is transformed into the static global
frame map. Therefore, the localization capabilities of the mobile manipulator OMNIVIL are
used, as described in [29]. Figure 19a shows the approached 3D positions of the end-effector
in the map frame. The positions are colored accordingly to their related local subsegment.
Figure 19b shows the surface-orthogonal orientation of the end-effector at each 3D position.
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Figure 20a shows the shifted end-effector positions, which reflect the concave and
convex shape of the scanned surface. The middle part of the form is not covered due to the
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limited maximum reach of the used manipulator UR5. Figure 20b shows the path of the
end-effector executed at each local subsegment.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 20 of 22 
 

Figure 20a shows the shifted end-effector positions, which reflect the concave and 
convex shape of the scanned surface. The middle part of the form is not covered due to 
the limited maximum reach of the used manipulator UR5. Figure 20b shows the path of 
the end-effector executed at each local subsegment. 

 
Figure 20. Execution of inspection process of the complete work piece. (a) 3D positions of the end-effector shifted alongside 
the surface normal by the amount of the scanning distance; (b) path executed by the end-effector during the inspection 
process. 

4. Conclusions 
This study presented a method for the automation of the large-scale inspection pro-

cess of wind turbine blades in manufacturing. The focus was set on the control of the au-
tonomous mobile manipulator. It provided insights into related research fields, including 
autonomous navigation and surface orthogonal motion planning. The presented methods 
are applicable to various tasks related to large-scale inspection. 

The developed approach realized autonomous navigation including a zone-based 
segmentation of the production environment. The common approach of a layered cost-
map was extended to fulfil the needs of a collaborative human–robot industrial environ-
ments. In addition, a new method was presented, which manipulates the cost values dur-
ing the search expansion of a path planner. The method was applied to the state-of-the-
art algorithms A* and Dijkstra and was used to realize a right-hand driving behavior of 
the mobile manipulator in corridor zones. An experiment in a simulation environment 
showed the superior efficiency and reliability of the method. The actual inspection process 
was performed in an asynchronous mode by the mobile manipulator. Therefore, a method 
was developed to segment the workpiece into smaller subsegments, which can be in-
spected by the manipulator. The motion planning at the local subsegments used a surface 
reconstruction based on point cloud data. The resulting waypoints were considered nodes 
in a complete graph. The problem to find the shortest path was solved by applying algo-
rithms related to the traveling salesman problem. The developed system was evaluated 
in a real-use case. 

Further improvements will focus on the segmentation of the production environ-
ment. The segmentation can be performed automatically by taking documentation of the 
factory layout into a concern or by identifying workstations by the robot itself. Further-
more, the generation of the workpiece model should be performed by the robot itself. 

  

Figure 20. Execution of inspection process of the complete work piece. (a) 3D positions of the end-effector shifted
alongside the surface normal by the amount of the scanning distance; (b) path executed by the end-effector during the
inspection process.

4. Conclusions

This study presented a method for the automation of the large-scale inspection pro-
cess of wind turbine blades in manufacturing. The focus was set on the control of the
autonomous mobile manipulator. It provided insights into related research fields, including
autonomous navigation and surface orthogonal motion planning. The presented methods
are applicable to various tasks related to large-scale inspection.

The developed approach realized autonomous navigation including a zone-based
segmentation of the production environment. The common approach of a layered costmap
was extended to fulfil the needs of a collaborative human–robot industrial environments.
In addition, a new method was presented, which manipulates the cost values during
the search expansion of a path planner. The method was applied to the state-of-the-art
algorithms A* and Dijkstra and was used to realize a right-hand driving behavior of the
mobile manipulator in corridor zones. An experiment in a simulation environment showed
the superior efficiency and reliability of the method. The actual inspection process was
performed in an asynchronous mode by the mobile manipulator. Therefore, a method was
developed to segment the workpiece into smaller subsegments, which can be inspected
by the manipulator. The motion planning at the local subsegments used a surface recon-
struction based on point cloud data. The resulting waypoints were considered nodes in a
complete graph. The problem to find the shortest path was solved by applying algorithms
related to the traveling salesman problem. The developed system was evaluated in a
real-use case.

Further improvements will focus on the segmentation of the production environment.
The segmentation can be performed automatically by taking documentation of the factory
layout into a concern or by identifying workstations by the robot itself. Furthermore, the
generation of the workpiece model should be performed by the robot itself.

Author Contributions: Conceptualization and methodology, H.E.; supervision, S.D. and S.K.; soft-
ware, H.E., P.C. and H.D.; validation, H.E., P.C. and H.D.; writing—original draft preparation, H.E.;
writing—review and editing, H.E. and S.D.; project administration, H.E. and P.C. All authors have
read and agreed to the published version of the manuscript.



Appl. Sci. 2021, 11, 9271 21 of 22

Funding: This research was funded by European Regional Development Fund. Research project
FiberRadar (EFRE-0801493).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This project was supported by the Faculty of Engineering and Built Environment,
Tshwane University of Technology and the Faculty of Mechanical Engineering and Mechatronics,
University of Applied Sciences Aachen.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. GWEC. Global Wind Report 2021. Available online: https://www.windenergyhamburg.com/fileadmin/windenergy/2022/pdf/

we_gwec-global-wind-report-2021.pdf (accessed on 3 May 2021).
2. Ancona, D.; McVeigh, J. Wind Turbine-Materials and Manufacturing Fact Sheet; Princeton Energy Resources International, LLC:

Rockville, MD, USA, 2001; p. 19.
3. Murray, R.; Swan, D.; Snowberg, D.R.; Berry, D.; Beach, R.; Rooney, S. Manufacturing a 9-Meter Thermoplastic Composite Wind

Turbine Blade. In Proceedings of the American Society for Composites Thirty-Second Technical Conference, West Lafayette, IN,
USA, 23–25 October 2017; DEStech Publications: Lancaster, PA, USA, 2017. ISBN 978-1-60595-418-9.

4. Yang, K.; Rongong, J.A.; Worden, K. Damage detection in a laboratory wind turbine blade using techniques of ultrasonic NDT
and SHM. Strain 2018, 54, e12290. [CrossRef]

5. Garcia Marquez, F.P.; Gomez Munoz, C.Q. A new approach for fault detection, location and diagnosis by ultrasonic testing.
Energies 2020, 13, 1192. [CrossRef]

6. Yang, R.; He, Y.; Mandelis, A.; Wang, N.; Wu, X.; Huang, S. Induction infrared thermography and thermal-wave-radar analysis
for imaging inspection and diagnosis of blade composites. IEEE Trans. Ind. Inform. 2018, 14, 5637–5647. [CrossRef]

7. Hwang, S.; An, Y.-K.; Sohn, H. Continuous line laser thermography for damage imaging of rotating wind turbine blades. Procedia
Eng. 2017, 188, 225–232. [CrossRef]

8. Arnold, P.; Moll, J.; Mälzer, M.; Krozer, V.; Pozdniakov, D.; Salman, R.; Rediske, S.; Scholz, M.; Friedmann, H.; Nuber, A.
Radar-based structural health monitoring of wind turbine blades: The case of damage localization. Wind Energy 2018, 21, 676–680.
[CrossRef]

9. Herschel, R.; Pawliczek, S. 3D millimeter wave screening of wind turbine blade segments. In Proceedings of the 15th European
Radar Conference (EuRAD), Madrid, Spain, 26–28 September 2018; pp. 115–117, ISBN 2874870536.

10. Froehly, A.; Herschel, R. Refraction Compensation in Non-Destructive Testing. In Proceedings of the 15th European Conference
on Antennas and Propagation (EuCAP), Düsseldorf, Germany, 22–26 March 2021; pp. 1–5, ISBN 8831299026.

11. Enevoldsen, P.; Xydis, G. Examining the trends of 35 years growth of key wind turbine components. Energy Sustain. Dev. 2019, 50,
18–26. [CrossRef]

12. Mishnaevsky, L.; Branner, K.; Petersen, H.N.; Beauson, J.; McGugan, M.; Sørensen, B.F. Materials for wind turbine blades: An
overview. Materials 2017, 10, 1285. [CrossRef] [PubMed]

13. Hvilshøj, M.; Bøgh, S.; Nielsen, O.S.; Madsen, O. Autonomous industrial mobile manipulation (AIMM): Past, present and future.
Ind. Robot Int. J. 2012, 39, 120–135. [CrossRef]

14. Schuler, J. Integration von Förder- und Handhabungseinrichtungen; Springer: Berlin, Germany, 1987.
15. Hvilshøj, M.; Bøgh, S.; Nielsen, O.S.; Madsen, O. Multiple part feeding—Real-world application for mobile manipulators. Assem.

Autom. 2012, 32, 62–71. [CrossRef]
16. Halt, L.; Meßmer, F.; Hermann, M.; Wochinger, T.; Naumann, M.; Verl, A. AMADEUS-A robotic multipurpose solution for

intralogistics. In Proceedings of the 7th German Conference on Robotics, ROBOTIK 2012, Munich, Germany, 21–22 May 2012;
pp. 1–6.

17. Krueger, V.; Chazoule, A.; Crosby, M.; Lasnier, A.; Pedersen, M.R.; Rovida, F.; Nalpantidis, L.; Petrick, R.; Toscano, C.; Veiga, G. A
Vertical and Cyber–Physical Integration of Cognitive Robots in Manufacturing. Proc. IEEE 2016, 104, 1114–1127. [CrossRef]

18. Bogh, S.; Schou, C.; Ruehr, T.; Kogan, Y.; Doemel, A.; Brucker, M.; Eberst, C.; Tornese, R.; Sprunk, C.; Tipaldi, G.D.; et al.
Integration and Assessment of Multiple Mobile Manipulators in a Real-World Industrial Production Facility. In Proceedings of
the 41st International Symposium on Robotics, Munich, Germany, 2–3 June 2014; pp. 1–8.

19. Dömel, A.; Kriegel, S.; Kaßecker, M.; Brucker, M.; Bodenmüller, T.; Suppa, M. Toward fully autonomous mobile manipulation for
industrial environments. Int. J. Adv. Robot. Syst. 2017, 14, 1–19. [CrossRef]

20. Outón, J.L.; Villaverde, I.; Herrero, H.; Esnaola, U.; Sierra, B. Innovative Mobile Manipulator Solution for Modern Flexible
Manufacturing Processes. Sensors 2019, 19, 5414. [CrossRef] [PubMed]

21. Saenz, J.; Vogel, C.; Penzlin, F.; Elkmann, N. Safeguarding Collaborative Mobile Manipulators—Evaluation of the VALERI
Workspace Monitoring System. Procedia Manuf. 2017, 11, 47–54. [CrossRef]

https://www.windenergyhamburg.com/fileadmin/windenergy/2022/pdf/we_gwec-global-wind-report-2021.pdf
https://www.windenergyhamburg.com/fileadmin/windenergy/2022/pdf/we_gwec-global-wind-report-2021.pdf
http://doi.org/10.1111/str.12290
http://doi.org/10.3390/en13051192
http://doi.org/10.1109/TII.2018.2834462
http://doi.org/10.1016/j.proeng.2017.04.478
http://doi.org/10.1002/we.2184
http://doi.org/10.1016/j.esd.2019.02.003
http://doi.org/10.3390/ma10111285
http://www.ncbi.nlm.nih.gov/pubmed/29120396
http://doi.org/10.1108/01439911211201582
http://doi.org/10.1108/01445151211198728
http://doi.org/10.1109/JPROC.2016.2521731
http://doi.org/10.1177/1729881417718588
http://doi.org/10.3390/s19245414
http://www.ncbi.nlm.nih.gov/pubmed/31835307
http://doi.org/10.1016/j.promfg.2017.07.129


Appl. Sci. 2021, 11, 9271 22 of 22

22. Fritzsche, M.; Saenz, J.; Penzlin, F. A large scale tactile sensor for safe mobile robot manipulation. In Proceedings of the 11th
International Conference on Human-Robot Interaction (HRI), Christchurch, New Zealand, 7–10 March 2016; pp. 427–428.

23. Andersen, R.S.; Bøgh, S.; Moeslund, T.B.; Madsen, O. Intuitive task programming of stud welding robots for ship construction. In
Proceedings of the International Conference on Industrial Technology, Seville, Spain, 17–19 March 2015; pp. 3302–3307.

24. Yu, L.; Yang, E.; Ren, P.; Luo, C.; Dobie, G.; Gu, D.; Yan, X. Inspection Robots in Oil and Gas Industry: A Review of Current
Solutions and Future Trends. In Proceedings of the 25th International Conference on Automation and Computing (ICAC),
Lancaster, UK, 5–7 September 2019; pp. 1–6, ISBN 978-1-8613-7665-7.
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