
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7686  | https://doi.org/10.1038/s41598-022-11210-y

www.nature.com/scientificreports

Advanced sleep spindle 
identification with neural networks
Lars Kaulen1, Justus T. C. Schwabedal2, Jules Schneider3, Philipp Ritter3 & 
Stephan Bialonski1,4*

Sleep spindles are neurophysiological phenomena that appear to be linked to memory formation and 
other functions of the central nervous system, and that can be observed in electroencephalographic 
recordings (EEG) during sleep. Manually identified spindle annotations in EEG recordings suffer from 
substantial intra- and inter-rater variability, even if raters have been highly trained, which reduces the 
reliability of spindle measures as a research and diagnostic tool. The Massive Online Data Annotation 
(MODA) project has recently addressed this problem by forming a consensus from multiple such rating 
experts, thus providing a corpus of spindle annotations of enhanced quality. Based on this dataset, 
we present a U-Net-type deep neural network model to automatically detect sleep spindles. Our 
model’s performance exceeds that of the state-of-the-art detector and of most experts in the MODA 
dataset. We observed improved detection accuracy in subjects of all ages, including older individuals 
whose spindles are particularly challenging to detect reliably. Our results underline the potential of 
automated methods to do repetitive cumbersome tasks with super-human performance.

Sleep spindles are phenomena occurring in the brain of sleeping mammals1 that are associated with diverse 
neurological processes, such as cognitive abilities, including learning, memory consolidation and intelligence1–5. 
Changes in sleep spindle characteristics have been reported for various sleep disorders6, mental illnesses such 
as schizophrenia7–9, autism10,11 and bipolar disorder12, and neurodegenerative diseases such as Alzheimer’s 
disease13,14. These findings suggest that sleep spindles may serve as prognostic and diagnostic biomarkers for 
various diseases in the future1.

Spindles are brief, distinct bursts of rhythmic activity visible in electroencephalographic recordings (EEG) 
with frequencies in the range of 11–16 Hz (sigma-band) and a duration of at least 0.5 s, according to the American 
Academy of Sleep Medicine (AASM)15. Sleep spindles are generated in the thalamic reticular nucleus and relayed 
to the cortex by neuronal feedback loops1. The gold standard for spindle detection is spindle identification by 
trained experts who visually inspect and annotate EEG signals. This manual process is known to be time-consum-
ing and therefore expensive, and is thus a limiting factor for large-scale spindle studies. Moreover, inconsistencies 
and disagreements among experts introduce noise in spindle annotations (label noise). Indeed, only substantial 
agreement was reported when an expert inspected the same data multiple times (intra-rater reliability, Cohen’s 
κ = 0.66 ), and the agreement between multiple experts (inter-rater reliability) was only moderate ( κ = 0.52)16.

An automated system for the detection of spindles that mimics an expert scorer would determine spindles 
consistently, but it would be limited by the level of disagreement among experts. This challenge can be addressed 
by having a group of experts separately identify sleep spindles in order to form a group consensus (expert con-
sensus)16. By increasing the number of experts, such a consensus converges to generalizable annotations17. For 
sleep spindle identification, it was estimated that 2–3 experts were required to achieve a consensus of ‘substantial’ 
reliability, and at least 4 or more experts were needed to reach ‘almost perfect’ reliability16. Publicly available data-
sets of spindle annotations (such as MASS-SS2 with 19 participants about 23.6 years old, see Montreal Archive 
of Sleep Studies18) contain recordings of several subjects that are annotated by only one or two expert scorers. 
Notably, the DREAMS dataset19 was scored by five expert scorers but only comes from eight participants that were 
about 45.9 years of age20, thus limiting the generalization of systems trained thereon. Recently, in a remarkable 
crowdsourcing effort, the MODA (Massive Online Data Annotation) dataset was created in which EEG record-
ings from 180 subjects were scored for spindles by a median number of 5 experts (more than 95% of the data 
was annotated by at least 3 experts)21. Among the investigated methods for automated spindle identification, 
the algorithm A722 achieved the highest level agreement with the expert consensus with a performance similar 
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to an average expert scorer. However, as the consensus reduces the label noise substantially, we entertain the 
hypothesis of an automated system that exceeds individual expert scorers and replaces the manual annotation 
process, thereby enabling large-scale spindle studies.

The algorithms presented in the MODA study, including A7, are based on engineered features which make 
use of well-known physiological and physical properties of sleep spindles as they appear in the EEG, such as 
spindle amplitudes and frequencies7,8,22–26. The past years have shown that such feature-based methods are infe-
rior to methods of deep learning with neural networks, especially for problems of object or event detection27–29. 
Recent studies have confirmed this trend by training a variety of neural network architectures on minimally 
processed EEG signals: neural-net-based approaches report superior performance with respect to the F1 score, 
a quantity usually evaluated at a 20% overlap between algorithmically-detected and expert-annotated spindle. 
DOSED30 achieved an F1 of about 0.75, 0.50, and 0.45 when evaluated on a young, middle-aged, and older cohort. 
Exceeding these results, SpindleNet20 achieved an F1 of 0.82 when trained on a young cohort, but reached only 
0.48 on DREAMS, whose participants also have a variety of sleep pathologies. RED-CWT​ and RED-Time31, and 
SpindleU-Net32 achieved comparable performance of about 0.83 on the MASS-SS2 dataset; SpindleU-Net was 
also evaluated on DREAMS and exceeded previous results by reaching an F1 of 0.74.

In this contribution, we introduce a deep neural network model called SUMO33 (Slim U-Net trained on 
MODA) that approximates the expert consensus derived from the MODA dataset to identify sleep spindles. 
The network architecture is inspired by U-Net34, a deep neural network that has been used with great success 
in the field of image segmentation35. The model complexity of SUMO is low compared to aforementioned deep 
learning models, which allows for data-efficient training on the MODA dataset. We demonstrate that our model 
surpasses the accurateness of the A7 algorithm and the average expert to identify spindles compared to the group 
consensus. Downstream measures (spindle duration and density) derived from the model’s predictions correlated 
stronger with the expert consensus compared to A7. We consider approaches such as ours to be promising for 
the future of automated sleep spindle identification.

Materials and methods
EEG and spindle dataset.  We obtained two datasets to train and study the model. The first dataset con-
tained EEG recordings from the Montreal Archive of Sleep Studies (MASS)18, which are publicly available36. 
Retrieval and analysis was approved by the local ethics committee at Technische Universität Dresden, Germany 
(permit number BO-EK-50012021). All analytical methods were carried out according to the ethical principles 
of the Declaration of Helsinki37 and the recommendations on good clinical practice38. The second dataset con-
sisted of freely available crowdsourced spindle annotations from the Massive Online Data Annotation (MODA) 
study21. Of the 200 individual recordings contained in MASS, the MODA study selected 180 recordings of C3-LE 
or C3-M2 EEG channels. Recordings were split into a younger (24 years mean age) and an older (62 years mean 
age) cohort to make annotations. Each recording was divided into several 115 s long segments containing N2 
sleep without artifacts. Ten segments were randomly sampled from each recording in a subset of 30 recordings 
(from 15 younger and 15 older subjects), and three segments were randomly sampled from each of the remain-
ing 150 recordings. After band-pass filtering and downsampling, these segments were exhaustively scored by 47 
certified EEG technicians. A median of five EEG technicians reviewed any one segment. Available to use was an 
expert consensus of spindle annotations formed from the annotations of the EEG technicians. The method by 
which the expert consensus was formed as well as other details can be found in Lacourse et al. (2020)21.

Signal preprocessing.  We downsampled each EEG segment to 100 Hz using a phase-preserving, 10-th order 
Butterworth filter (passband 0.3–30 Hz) according to the MODA study. In addition, we z-transformed each 
segment (zero mean, unit variance) before further processing to decrease inter-individual differences in the 
recording modalities.

Training and test sets.  We divided the dataset into a training and a test set (see Table 1) guided by the 
following principles. All segments of any one individual shall belong to either the training or the test set. The 

Table 1.   Training- and test-splits of individuals and EEG segments, respectively. We divided all individuals in 
the MODA dataset into a training and test set such that, for the test set, individuals and segments were divided 
equally between age groups. Among a set of random splits satisfying this equality, we selected the split with 
median performance for algorithm A7.

cohort training

test

sumyounger older

individuals

younger 82 18 0 100

older 62 0 18 80

sum 144 18 18 180

segments

younger 351 54 0 405

older 291 0 54 345

sum 642 54 54 750
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ten-segment individuals shall belong to the training set. The test set shall have equal numbers of younger and 
older individuals. Algorithm A7 shall show an average performance on the test set segments.

The last principle was added because published results of A7 were obtained on the whole dataset, for which we 
were unable to generate an out-of-sample prediction of our model. To split off a test set that did not bias A7, we 
randomly drew 25 test set candidates from the distribution defined by the rest of the above principles. We evalu-
ated A7 on each candidate and determined its F1 score (see “Evaluation of spindle detections.” section). From 
all candidate test sets, we chose the one on which A7 reached the median F1 score of the sample distribution.

Model architecture.  The architecture of the model SUMO was inspired by U-Net34, which is a fully-con-
volutional network. SUMO consisted of a branching encoder making up the left side of the U followed by a 
converging decoder making up the right side (see Fig. 1). The encoder compressed temporal features in a single 
EEG segment into an increasing number of context channels through several levels of compression. The decoder 
expanded the context into temporal information while reducing the number of context channels in a symmetric 
number of expansion levels. After each compression, a branch was fed into the matching expansive level through 
shortcut connections (cf. Fig. 1). The output of the last layer represented raw per data point probabilities of being 
part of a spindle or not (no-spindle). These probabilities were either fed into the loss function or underwent 
further processing to predict spindle annotations.

Each level of compression and expansion consisted of two composite layers of convolution39, rectified linear 
unit40, and batch normalization41. The two convolutions had the same number of channels. The compression 
step on the left side of the U was implemented by max-pooling the composite-layer output. The expansion step 
(right side) was achieved by nearest-neighbor upsampling followed by a convolution mapping to half the num-
ber of input filters. This half was then supplemented by concatenating the output activations from the matching 
contracting step in the left side of the U.

When predicting spindle annotations, the raw output probabilities in the spindle and no-spindle channel 
were temporally smoothed with a moving-average filter and converted to spindle indicator values by taking the 
point-wise maximum. Consecutive positive indications were then joined to form spindle annotations consti-
tuted by a starting sample and a duration. The width of the moving-average filter was a hyperparameter that we 
optimized (see “Results” section).

Training.  Before training, we divided all training segments into training and validation sets using a six-
fold cross validation procedure for hyperparameter optimization and early stopping. Similar to the test-training 
splits, the six folds were split on a by-individual basis wherein the 10-segment individuals were equally divided 

Figure 1.   Architecture of the SUMO model. Each box represents a feature map with the number of filters given 
on top. The operations conducted are represented by the colored arrows. Convolutions are described using the 
format (k, d)-Conv with k denoting the kernel size and d the dilation size. ReLU: rectified linear unit; BN: batch 
normalization. Up-Conv Layer: nearest-neighbor upsampling with factor 4 followed by a (4, 1)-Conv.
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across the folds. This means that the 144 subjects of the training set (see Table 1) form six folds of 24 subjects 
each, where a model is trained on five folds (120 subjects) and evaluated on the remaining fold (24 subjects). 
Six separate training sessions were carried out to perform the six-fold cross validation. For each session, we 
initialized the trainable network parameters using Kaiming’s procedure of uniform initialization42. Feeding the 
network with minibatches of training examples (12 segments), we evaluated the output and the expert-con-
sensus annotations using a generalized dice loss function43. The resulting error signals were backpropagated 
and parameters were updated using Adam stochastic gradient descent with parameters β1 = 0.9 , β2 = 0.999 , 
ǫ = 10−8 , and learning rate α = 0.00544. After processing each sample in the training data once (i.e., after one 
training epoch), we computed the network’s F1 score (see next section) for the validation set which was one of 
the six folds. If the F1 score did not improve over the course of 300 training epochs, or if the 800-th training 
epoch was reached, the training was stopped. We then stored the parameters of the best performing models (one 
model for each validation fold) from the training session for further processing.

Evaluation of spindle detections.  We evaluated the performance of our model in an analysis by event 
and an analysis by subject. The analysis by event reflects the primary objective of the model to reliably identify 
individual sleep spindles. Following Warby et al.45, we compared a detected set of spindles to the expert con-
sensus (EC) on a by-spindle (by-event) basis. For each EC spindle, we determined the temporal overlap of the 
closest detected spindle relative to the joined duration of both. If that relative overlap exceeded a threshold, we 
counted a true positive (TP). Else, we counted a false negative (FN). Each detection that did not sufficiently 
overlap with an EC spindle was counted as a false positive (FP). We note that an alternative to this by-event 
evaluation would be to evaluate each data point in a spindle separately. However, such an approach would put 
additional weight on long spindles because of temporal correlations, which we wanted to avoid.

From the evaluations, we computed the recall, TP/(TP+ FN) , the precision, TP/(TP+ FP) , and the F1 score, 
2 · TP/(2 · TP+ FP+ FN) , to quantify the quality of spindle detection. All these metrics depend on the chosen 
overlap threshold that determines TP, FN, and FP. Thus, as a parameter-free metric, we also determined F1 as the 
integral of F1 scores over overlap thresholds. Finally, for a more detailed by-event analysis, we studied SUMO’s 
performance stratified by age cohorts.

In our analysis by subject, we investigated the usefulness of the predictions for downstream measures such 
as average spindle characteristics which are of interest to sleep researchers. From the predicted spindles, we 
determined average spindle duration and spindle density per subject. We studied how much these characteristics 
were correlated with those derived from the expert consensus.

Results
Hyperparameter optimization.  We explored how accurate SUMO could predict the expert consensus 
depending on the architecture of the model, i.e. the number of levels, the maximal receptive field, the number 
of channels, and the width of the moving-average filter applied to the net’s raw output. We focussed on these 
parameters hypothesizing their importance to accurately predict spindles, which show characteristic time scales 
in their occurrence, duration, and rhythm. For a given configuration, we carried out a six-fold cross validation 
by training six SUMO models that were independently initialized. After one training epoch of 45 training steps 
(equivalent to the size of the training set), we applied the model in its current state to the validation set to deter-
mine the F1 score dependent on the overlap threshold. From this dependence, we computed F1 as a parameter-
free metric of the model performance. If exceeding previous F1 values, we noted the new value and stored the 
parameters as the new candidate for the best model. After about 300 training epochs, the F1 score did typically 
not improve further and the training stopped. The training was also stopped after 800 training epochs which 
occurred in about 50 individual training sessions. In Fig. 2, we show an exemplary spindle prediction of a trained 
SUMO model applied to a 20 s long EEG segment together with the expert-consensus spindles. In the example, 
all three spindles were detected with an overlap of about 90%.

After all six training sessions were concluded, we compared the average across the best F1 from each fold to 
F1 averages obtained for other network configurations. We varied the number of levels of the architecture, and 
within each level the width of the max-pooling operation to fine tune their receptive fields. We also changed 
the model capacity by varying the number of convolutional filters per level. We varied the number of levels 
of the model between 2 ( F1= 0.599± 0.017 ) and 5 ( F1= 0.635± 0.015 ), and found a shallow optimum of F1
= 0.638± 0.021 for an architecture consisting of 3 levels. Here, max pooling operations went across 4, 4, 2, and 2 
data points in consecutive levels of the model. For 3-level models, we varied the width w2 of the second max pool-
ing while keeping the first max-pooling width w1 at 4. Between w2 = 1 (receptive field of 1.48 s), where we found 
F1= 0.611± 0.027 , and w2 = 8 (6.24 s, F1= 0.633± 0.027 ), we found a shallow optimum of F1= 0.644± 0.015 
at w2 = 4 (i.e. 3.52 s). When doubling the number of convolutional filters in the 5-level model (number of filters 
per level: 32, 64, 128, 256, 512), we observed F1= 0.629± 0.022 compared to F1= 0.635± 0.015 without doubling 
(filters per level: 16, 32, 64, 128, 256). We did not observe large variations in F1 when further increasing the 
number of convolutional filters and thus used the number of filters as depicted in Fig. 1. Finally, we optimized 
the width of the moving-average filter searching in a range between 10 and 200 data points (0.1-2 s). We found 
a shallow optimum at 42 data points where we reached F1= 0.646.

In total, we trained about 100 such configurations and found their F1 scores to be remarkably stable across 
folds. We thus determined the optimal model configuration within our search space to consist of three levels, 
each one pooling across 4 time points. The raw output was further processed with a 0.42-s wide moving-average 
filter before thresholding in order to determine spindle predictions.
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Analysis by event.  We then went on to compare the performance of the SUMO model to algorithm A7 and 
the expert consensus (see results in Table 2). First, we extracted recall, precision, and F1 score (for 20% overlap 
threshold) of the average expert and A7 from Lacourse et al.21, supplementary Table 2. We also computed these 
metrics for A7 on the hold-out test set. Comparing A7 performance on the test and the whole dataset, we found 
that all test set metrics were equal to, or numerically exceeded the metrics obtained on the whole dataset.

We also evaluated SUMO in its best-performing configuration on the test set and found that its F1 score 
exceeded A7 by 10 base points on the younger cohort, and by 8 base points on the older cohort. By comparing 
all SUMO metrics from the test set to those on the validation and training set (evaluated for the respective fold), 
we found no signs of overfitting across all three sets.

We analyzed how our best model compared with average-expert and A7 detections for overlap thresholds 
different from 20%. We extracted the comparative performance values from Figure 2 in Lacourse et al. (2020)21 
and overlaid the F1 scores from our best model on the test set. As shown in Fig. 3, we found that our F1 scores 
were higher compared to the average expert and A7 for all overlap thresholds. In the case of the older individuals, 
our F1 score was consistently one standard deviation better (i.e., above the gray area in Fig. 3) than the average 
expert except for overlap thresholds larger than 90%.

Analysis by subject.  Many sleep studies identify sleep spindles to derive characteristics such as the number 
of spindles per minute (spindle density), or the average spindle duration. We tested how these characteristics 
derived from automatic spindle annotations compared to the expert consensus.

We determined spindle density and duration for each individual in the test set from the expert consensus, A7, 
and the SUMO model presented in the previous section. We then analyzed their linear dependency by fitting a 
linear model to the relationship of algorithm-derived and consensus characteristics and noted the slope m. This 

Figure 2.   Comparison of SUMO predictions with expert consensus on an exemplary EEG segment. Top panel: 
A 20 s long segment of N2-sleep EEG from the test set shows three spindles marked by the expert consensus 
(green marks). Our trained SUMO model detects all three spindles with about 90% overlap (orange marks). 
Bottom panel: The predictions are generated by thresholding SUMO’s output probabilities (orange line) with a 
threshold of 0.5 (black line).

Table 2.   Recall, precision, and F1 score of mean expert, A7, and SUMO in younger and older individuals. 
Our best SUMO model numerically exceeds the mean-expert and A7 scores in all categories. The test set 
performance of A7 exceeds its values on the full dataset except for the precision metric. All metrics were 
computed with a 20% overlap threshold. Numbers in parentheses denote standard deviations across the 
folds of the 6-fold cross validation. The individual experts were evaluated against the leave-one-out expert 
consensus. Maximum values obtained on the test set are shown in bold.

detector data

recall precision F1 score

both younger older both younger older both younger older

mean expert all 0.72 0.76 0.66 0.78 0.81 0.74 0.72 0.76 0.65

A722 all 0.73 0.75 0.70 0.71 0.73 0.69 0.72 0.74 0.70

A722 test 0.76 0.78 0.73 0.70 0.70 0.69 0.73 0.74 0.71

SUMO test 0.79 0.82 0.73 0.85 0.85 0.85 0.82 0.84 0.79

SUMO val 0.81 (0.01) 0.85 (0.02) 0.75 (0.01) 0.83 (0.02) 0.83 (0.03) 0.83 (0.01) 0.82 (0.01) 0.84 (0.02) 0.79 (0.01)

SUMO train 0.82 (0.02) 0.85 (0.02) 0.76 (0.03) 0.83 (0.02) 0.83 (0.02) 0.83 (0.02) 0.82 (0.00) 0.84 (0.01) 0.79 (0.01)
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slope should be 1 to accurately indicate changes of the given spindle characteristic caused by an intervention, 
for example. As a measure of precision of the predicted spindle characteristic, we determined the level of cor-
relation using Pearson’s r. Resultant r-values were compared across the two algorithms after applying Fisher’s 
z-transform47. The results of our analyses are shown in Fig. 4 (middle and right column) and Table 3.

Spindle density.  The expert consensus showed a bimodal distribution of spindle densities with modes at about 
1 and 5.25 spindles per minute. Both algorithm-derived spindle densities showed a high level of correlation with 
the expert consensus, with A7 showing r2 = 0.68 for younger and r2 = 0.88 for older participants, and SUMO 
showing r2 = 0.84 and r2 = 0.89 . When comparing the z-transformed r-values, we found no statistically signifi-
cant difference at α = 0.05.

The slope of A7-derived spindle densities deviated numerically more from 1 than SUMO-derived densities, 
especially for younger individuals with mA7 = 0.55.

Spindle duration.  In the analysis of spindle duration, we found much weaker correlations compared to the den-
sity results presented above. A7 showed r2 = 0.35 for younger and r2 = 0.07 for older participants, and SUMO 
showed r2 = 0.82 and r2 = 0.37 . A statistical comparison (based on Fisher’s z-transform) gave some evidence 
that SUMO derived durations correlated stronger than A7 for younger individuals ( p = 0.02 ), but not for older 
ones ( p = 0.23).

When comparing the slope, we found that the A7 fit deviated markedly from an optimal slope showing 
m = 0.67 for younger and m = 0.33 for older individuals. In both cases, the SUMO spindle durations showed a 
slope of about m = 0.95.

Discussion
We trained the U-Net-type neural network SUMO on the MODA dataset to reliably identify sleep spindles in 
the electroencephalographic recordings in a test set stratified into younger (24 years mean age) and older (62 
years mean age) individuals. Our hyperparameter tuning optimized F1 , the integral of F1 scores over overlap 
thresholds, computed from the model detections and the expert-consensus spindles. We compared the per-
formance metrics F1 , as well as precision, recall, and F1 scores for a range of overlap thresholds of our trained 
model with the A7 algorithm as well as individual experts reported in Lacourse et al.21. Note that we did not 
evaluate the individual expert performance on the test set. Furthermore, we compared by-subject estimates of 
clinically-important spindle metrics (spindle density and average duration) derived by SUMO and A7 to those 
determined from the expert-consensus spindles using correlation analysis.

Spindles detected by our model showed, on average, larger overlap with those of the expert consensus than 
A7 (see Fig. 4, left column). Better agreement with expert-consensus spindles was also visible in F1 scores which 

Figure 3.   Overlap threshold dependency of F1 scores computed against the expert consensus. The F1 scores of 
algorithmic (A7: blue dashed line, SUMO: orange crosses) and expert (mean: black circles, standard deviation: 
gray area) detections decrease monotonically with the overlap threshold for younger (left panel) and older (right 
panel) individuals. At all thresholds, SUMO shows a higher F1 score compared to A7 as well as most individual 
experts. SUMO F1 scores were computed on the test set, which we designed to mimic the whole dataset with 
respect to the A7 performance. Expert and A7 F1 scores were reproduced from Figure 2 in Lacourse et al.21, 
licensed under CC BY 4.0 International46. As explained therein, the F1 scores of A7 were computed across the 
whole dataset, whereas F1 scores for individual experts were computed across the scored subset, and against all 
remaining experts. For comparison, the green dashed line indicates the expert consensus which serves as the 
ground truth.
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started to decrease at larger overlap thresholds for SUMO compared to A7 (see Fig. 3). In line with previous 
studies21,22,31,45, we evaluated the performance of our model for an overlap threshold of 20% . SUMO achieved 
an F1 score of 0.82 for the subjects in out-of-sample data (test set, both cohorts, see table 2, third-last column). 
This surpassed the A7 algorithm (0.73) on the test set and the average expert (0.72) on all data. Our model’s 
performance is comparable to a limited extent with those reported for other deep learning models at 20% overlap 
which were, however, trained on different datasets (with different age distributions) and predominantly based 
on annotations of individual experts. Reported F1 scores for models evaluated on datasets of young individuals 
were comparable to SUMO’s F1 score of 0.84 for the young cohort (F1 scores averaged over individual experts: 
0.83 (RED-CWT and RED-Time)31, 0.83 (SpindleU-Net)32, 0.83 (SpindleNet)31, 0.80 (DOSED)31). These obser-
vations may suggest that the accurateness of automated spindle detection has approached a limit imposed by 
non-negligible inter- and intra-rater reliability of experts who annotated the data. They also provide evidence 
of the superiority of deep learning methods compared to classical feature-based approaches such as A7, which 
achieved an F1 score of 0.74 for the younger cohort (see table 2). When evaluated on datasets of older individu-
als, reported performance of other deep learning models was lower than SUMO’s F1 score of 0.79 for the older 
cohort (0.74 (SpindleU-Net)32, F1 < 0.60 (DOSED)30). We note, however, that datasets of older individuals 
often include patients with various sleep pathologies, introducing additional factors that may limit comparative 
assessment of results. Nevertheless, the trend towards decreased detection performance was also visible for A7 
(F1 score of 0.71, see table 2). The difference in detection performance between age groups may be explained by 

Figure 4.   Overlap distribution, and spindle density and duration compared with expert consensus. Left panels: 
The frequency distribution of spindle predictions at specific overlaps computed for all spindles in the test set is 
more tightly peaked for SUMO (orange) compared with A7 (blue). The peak of the SUMO model is also shifted 
towards higher overlap percentages. Middle panels: Correlation analysis between per-individual spindle density 
from the expert consensus and predictions (SUMO, A7) indicate a flattened slope in younger individuals for A7 
clearly deviating from 1. Right panels: Similarly comparing spindle durations, A7 also shows a flattened slope.

Table 3.   Correlation coefficient r2 between spindle properties derived by automatic methods (A7 or SUMO) 
and the consensus of the expert group. Spindle density (spindles per minute) and average spindle duration 
were determined for each subject of the test set based on spindles identified by A7, SUMO, and the expert 
consensus. For each age cohort (younger, older), correlation coefficients between spindle properties based on 
the expert consensus and the automatic methods were determined.

Method

Density Duration

Younger Older Younger Older

A722 0.68 0.88 0.35 0.07

SUMO 0.84 0.89 0.82 0.37
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spindle amplitude and duration. Both are known to decrease with age48,49, which can make it more difficult for 
human scorers and automated methods to delineate spindles from the surrounding background signals in older 
individuals16. From a clinical perspective, however, we consider the reliable detection of sleep spindles in older 
subjects to be of particular importance as sleep disorders become more frequent with age. The availability of 
large datasets with expert-consensus annotations may prove particularly valuable for the development of spindle 
detectors and may explain SUMO’s superior performance for this age group.

Detecting individual spindles is only of indirect importance in the evaluation of a clinical study, for example: 
to evaluate clinical outcomes, statistical characteristics of spindles are compared across subjects, raising the ques-
tion of how imperfect detection algorithms reflect on such statistical estimates. In our by-subject analysis of the 
density and mean duration of spindles, we evaluated the correlation as well as the slope (from a linear model) 
between consensus and automated estimates by A7 and SUMO within age groups. Spindle densities computed 
from the expert consensus showed high levels of correlation with those estimated from A7 ( r2 ≥ 0.68 ) and SUMO 
( r2 ≥ 0.84 , see table 3). Spindle durations, on the other hand, correlated strongly for SUMO ( r2 = 0.82 ) in the 
younger cohort, but only moderately for A7 ( r2 = 0.35 ), whereas for the older cohort both methods yielded low 
correlations (0.37 and 0.07, respectively). Slopes of the linear models were close to one for SUMO ( m ≥ 0.94 ) 
for all spindle characteristics and age cohorts except for the spindle density of the younger cohort ( m = 0.87 ). 
All slopes for A7 were lower than for SUMO and achieved the largest value for the spindle density of the older 
cohort ( m = 0.82 ) and the lowest for the spindle duration of the older cohort ( m = 0.33 ). The results indicate 
that the spindle density can be estimated with higher accuracy compared to the mean spindle duration, and 
that A7 yields a biased estimator of these quantities. More complex spindle statistics may show additional sys-
tematic errors, and we recommend that the accurate automatic estimation of specific metrics should be verified 
before relying on their estimates. We speculate that spindle duration may sensitively depend on large overlap 
thresholds between predicted and actual spindles in order for predicted and actual durations to become similar. 
As the overlap threshold increased in both age cohorts, the F1 score decreased for A7 and SUMO, albeit more 
rapidly for A7 than for SUMO and to lower values for the older cohort than the younger cohort (see Fig. 3). This 
may explain the low levels of correlation of A7 or SUMO derived spindle duration for the older cohort, calling 
for methods that can more accurately identify sleep spindles at large overlap thresholds. Thus, we recommend 
future studies to evaluate spindle detectors at larger overlap thresholds (e.g., at 40%).

Our model has low model complexity and few hyperparameters since all layers are fully convolutional. Small 
model complexity allowed the model to be trained in a data-efficient way which prevents overfitting on small 
to medium-sized datasets such as MODA and eliminates the need for sophisticated regularization strategies 
(e.g., dropout). Indeed, we did not find evidence of overfitting since the F1 score obtained on the training set 
did not exceed the ones obtained on the validation and test sets (0.82, see third-last column in table 2). Various 
architectural changes (e.g., number of convolutional filters, the number of levels of the U, or the receptive fields 
of neurons of the last levels) did not sensitively affect the accurateness of spindle detection. While increasing 
the number of U-Net levels above three did not change F1 scores, increasing the receptive field of neurons (i.e. 
the length of an EEG segment a neuron has access to) of the third level above 3.5 s led to a slight decrease of F1 
scores. This may indicate that particular time scales are relevant for the model to yield reliable spindle predic-
tions. As spindle events usually show a duration between 0.5 and 1 s21, time scales larger than 3–4 s may not be 
informative for the model to reliably delineate spindle events from surrounding EEG activity. Thus, deeper levels 
of the U that integrate larger time scales may be ignored by the model.

The present study is limited in several respects. As previous methods for automated spindle detection, our 
model was trained to detect spindles in univariate time series (channel C3). Such a univariate approach does 
not localize sleep spindles (scalp localization50), a task desirable when studying the topographical distribution of 
spindles. While in principle our model can be used repeatedly to identify spindles in other channels, it remains 
to be investigated how accurate such detections are. Accurate localization of spindles could be achieved by mul-
tivariate models that would base their detections on all EEG channels. To develop and assess such models, we 
consider the creation of datasets with expert-consensus annotations for all EEG channels as the most important 
prerequisite. Another limitation shared with previous work22,31 is also related to the data used to train our model. 
Data were selected from N2 sleep stages of healthy individuals and were free from EEG artifacts. Ordinary EEG 
recordings will not meet these criteria, and spindles are also studied in N3 sleep. Models that accurately identify 
sleep spindles in N2 and N3 sleep and account for artifacts could be developed as datasets with corresponding 
expert-consensus annotations become available. Another limitation is related to the interpretation of expert-
consensus spindles as objective truth. It is not clear whether spindles detected by models but not identified by 
the expert consensus nevertheless are mechanistically identical or may even reflect other biologically meaning-
ful processes21. Furthermore, if an individual expert identified “true” spindles much more accurately than other 
experts, the expert consensus would be of lesser quality compared to this best individual expert. Since our model 
approximates an expert consensus, detected spindles are only objective in the sense that many experts would 
agree on them. Finally, we consider comparisons with previously published deep learning models on the MODA 
dataset as informative for future model development. To reduce difficulties for such comparative assessments in 
future studies, we publish our model together with detailed instructions33.

Our results underline the potential of deep learning models to automate the cumbersome task of spindle 
detection with super-human performance. We consider the availability of large datasets with expert-consensus 
annotations as key driver for the progress of methods towards objective and reliable spindle detection. We are 
confident that automatic spindle detection will continue to improve, saving staff and sleep researchers time and 
facilitating large-scale sleep studies.
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Data availability
The MODA dataset analyzed in the current study is described in Lacourse et al.21 and is publicly available on the 
Open Science Framework (OSF)51. The MASS dataset18, which contains the EEG recordings, is publicly avail-
able and can be obtained from the Montreal Archive of Sleep Studies web page36. The source code of the SUMO 
model is available on GitHub33.
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