Transforming literature-intensive research processes through text analytics – design, implementation and lessons learned
- The continuing growth of scientific publications raises the question how research processes can be digitalized and thus realized more productively. Especially in information technology fields, research practice is characterized by a rapidly growing volume of publications. For the search process various information systems exist. However, the analysis of the published content is still a highly manual task. Therefore, we propose a text analytics system that allows a fully digitalized analysis of literature sources. We have realized a prototype by using EBSCO Discovery Service in combination with IBM Watson Explorer and demonstrated the results in real-life research projects. Potential addressees are research institutions, consulting firms, and decision-makers in politics and business practice.