The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 5 of 25
Back to Result List

RANS Simulation Validation of a Small Sensor Turret for UAVs

  • Recent Unmanned Aerial Vehicle (UAV) design procedures rely on full aircraft steady-state Reynolds-Averaged-Navier-Stokes (RANS) analyses in early design stages. Small sensor turrets are included in such simulations, even though their aerodynamic properties show highly unsteady behavior. Very little is known about the effects of this approach on the simulation outcomes of small turrets. Therefore, the flow around a model turret at a Reynolds number of 47,400 is simulated with a steady-state RANS approach and compared to experimental data. Lift, drag, and surface pressure show good agreement with the experiment. The RANS model predicts the separation location too far downstream and shows a larger recirculation region aft of the body. Both characteristic arch and horseshoe vortex structures are visualized and qualitatively match the ones found by the experiment. The Reynolds number dependence of the drag coefficient follows the trend of a sphere within a distinct range. The outcomes indicate that a steady-state RANS model of a small sensor turret is able to give results that are useful for UAV engineering purposes but might not be suited for detailed insight into flow properties.

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Falk GöttenORCiD, Marc Havermann, Carsten BraunORCiD, Francisco Gomez, Cees Bil
DOI:https://doi.org/10.1061/(ASCE)AS.1943-5525.0001055
ISSN:1943-5525
Parent Title (English):Journal of Aerospace Engineering
Publisher:ASCE
Place of publication:New York
Document Type:Article
Language:English
Year of Completion:2019
Date of the Publication (Server):2019/07/31
Volume:32
Issue:5
Length:Article number 04019060
Link:https://doi.org/10.1061/(ASCE)AS.1943-5525.0001055
Zugriffsart:bezahl
Institutes:FH Aachen / Fachbereich Luft- und Raumfahrttechnik
collections:Verlag / ASCE