Mit Maximum-Entropie das Parsing natürlicher Sprache erlernen
- Für die Verarbeitung von natürlicher Sprache ist ein wichtiger Zwischenschritt das Parsing, bei dem für Sätze der natürlichen Sprache Ableitungsbäume bestimmt werden. Dieses Verfahren ist vergleichbar zum Parsen formaler Sprachen, wie z. B. das Parsen eines Quelltextes. Die Parsing-Methoden der formalen Sprachen, z. B. Bottom-up-Parser, können nicht auf das Parsen der natürlichen Sprache übertragen werden, da keine Formalisierung der natürlichen Sprachen existiert [3, 12, 23, 30].
In den ersten Programmen, die natürliche Sprache verarbeiten [32, 41], wurde versucht die natürliche Sprache mit festen Regelmengen zu verarbeiten. Dieser Ansatz stieß jedoch schnell an seine Grenzen, da die Regelmenge nicht vollständig sowie nicht minimal ist und wegen der benötigten Menge an Regeln schwer zu verwalten ist. Die Korpuslinguistik [22] bot die Möglichkeit, die Regelmenge durch Supervised-Machine-Learning-Verfahren [2] abzulösen.
Teil der Korpuslinguistik ist es, große Textkorpora zu erstellen und diese mit sprachlichen Strukturen zu annotieren. Zu diesen Strukturen gehören sowohl die Wortarten als auch die Ableitungsbäume der Sätze. Vorteil dieser Methodik ist es, dass repräsentative Daten zur Verfügung stehen. Diese Daten werden genutzt, um mit Supervised-Machine-Learning-Verfahren die Gesetzmäßigkeiten der natürliche Sprachen zu erlernen.
Das Maximum-Entropie-Verfahren ist ein Supervised-Machine-Learning-Verfahren, das genutzt wird, um natürliche Sprache zu erlernen. Ratnaparkhi [25] nutzt Maximum-Entropie, um Ableitungsbäume für Sätze der natürlichen Sprache zu erlernen. Dieses Verfahren macht es möglich, die natürliche Sprache (abgebildet als Σ∗) trotz einer fehlenden formalen Grammatik zu parsen.