- We generalize our work on Carlitz prime power torsion extension to torsion extensions of Drinfeld modules of arbitrary rank. As in the Carlitz case, we give a description of these extensions in terms of evaluations of Anderson generating functions and their hyperderivatives at roots of unity. We also give a direct proof that the image of the Galois representation attached to the p-adic Tate module lies in the p-adic points of the motivic Galois group. This is a generalization of the corresponding result of Chang and Papanikolas for the t-adic case.