- The aim of the current study was to investigate the performance of integrated RF
transmit arrays with high channel count consisting of meander microstrip antennas
for body imaging at 7 T and to optimize the position and number of transmit ele-
ments. RF simulations using multiring antenna arrays placed behind the bore liner
were performed for realistic exposure conditions for body imaging. Simulations were
performed for arrays with as few as eight elements and for arrays with high channel
counts of up to 48 elements. The B1+ field was evaluated regarding the degrees of
freedom for RF shimming in the abdomen. Worst-case specific absorption rate
(SARwc ), SAR overestimation in the matrix compression, the number of virtual obser-
vation points (VOPs) and SAR efficiency were evaluated. Constrained RF shimming
was performed in differently oriented regions of interest in the body, and the devia-
tion from a target B1+ field was evaluated. Results show that integrated multiring
arrays are able to generate homogeneous B1+ field distributions for large FOVs, espe-
cially for coronal/sagittal slices, and thus enable body imaging at 7 T with a clinical
workflow; however, a low duty cycle or a high SAR is required to achieve homoge-
neous B1+ distributions and to exploit the full potential. In conclusion, integrated
arrays allow for high element counts that have high degrees of freedom for the pulse
optimization but also produce high SARwc , which reduces the SAR accuracy in the
VOP compression for low-SAR protocols, leading to a potential reduction in array
performance. Smaller SAR overestimations can increase SAR accuracy, but lead to a
high number of VOPs, which increases the computational cost for VOP evaluation
and makes online SAR monitoring or pulse optimization challenging. Arrays with
interleaved rings showed the best results in the study.