- In this field study we present an approach for the comprehensive and room-specific assessment of
parameters with the overall aim to realize energy-efficient provision of hygienically harmless and
thermally comfortable indoor environmental quality in naturally ventilated non-residential
buildings. The approach is based on (i) conformity assessment of room design parameters, (ii)
empirical determination of theoretically expected occupant-specific supply air flow rates and
corresponding air exchange rates, (iii) experimental determination of real occupant-specific
supply air flow rates and corresponding air exchange rates, (iv) measurement of indoor environmental
exposure conditions of T, RH, cCO2 , cPM2.5 and cTVOC, and (v) determination of real
energy demands for the prevailing ventilation scheme. Underlying assessment criteria comprise
the indoor environmental parameters of category II of EN 16798-1: Temperature T = 20 ◦C–24 ◦C,
and relative humidity RH = 25 %–60 % as well as the guide values of the German Federal
Environment Agency for cCO2 cPM2.5 and cTVOC of 1000 ppm, 15 μg m⁻³, and 1 mg m ⁻³,
respectively.
Investigation objects are six naturally ventilated classrooms of a German secondary school.
Major factors influencing indoor environmental quality in these classrooms are the specific room
volume per occupant and the window opening area. It is concluded that the rigorous implementation
of ventilation recommendations laid down by the German Federal Environment
Agency is ineffective with respect to anticipated indoor environmental parameters and inefficient
with respect to ventilation energy losses on the order of about 10 kWh m⁻² a ⁻¹ to 30 kWh m⁻²
a ⁻¹.