Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 45 von 9844
Zurück zur Trefferliste

Concept development of a mainstream deammonification and comparison with conventional process in terms of energy, performance and economical construction perspectives

  • Deammonification for nitrogen removal in municipal wastewater in temperate and cold climate zones is currently limited to the side stream of municipal wastewater treatment plants (MWWTP). This study developed a conceptual model of a mainstream deammonification plant, designed for 30,000 P.E., considering possible solutions corresponding to the challenging mainstream conditions in Germany. In addition, the energy-saving potential, nitrogen elimination performance and construction-related costs of mainstream deammonification were compared to a conventional plant model, having a single-stage activated sludge process with upstream denitrification. The results revealed that an additional treatment step by combining chemical precipitation and ultra-fine screening is advantageous prior the mainstream deammonification. Hereby chemical oxygen demand (COD) can be reduced by 80% so that the COD:N ratio can be reduced from 12 to 2.5. Laboratory experiments testing mainstream conditions of temperature (8–20°C), pH (6–9) and COD:N ratio (1–6) showed an achievable volumetric nitrogen removal rate (VNRR) of at least 50 gN/(m3∙d) for various deammonifying sludges from side stream deammonification systems in the state of North Rhine-Westphalia, Germany, where m3 denotes reactor volume. Assuming a retained Norganic content of 0.0035 kgNorg./(P.E.∙d) from the daily loads of N at carbon removal stage and a VNRR of 50 gN/(m3∙d) under mainstream conditions, a resident-specific reactor volume of 0.115 m3/(P.E.) is required for mainstream deammonification. This is in the same order of magnitude as the conventional activated sludge process, i.e., 0.173 m3/(P.E.) for an MWWTP of size class of 4. The conventional plant model yielded a total specific electricity demand of 35 kWh/(P.E.∙a) for the operation of the whole MWWTP and an energy recovery potential of 15.8 kWh/(P.E.∙a) through anaerobic digestion. In contrast, the developed mainstream deammonification model plant would require only a 21.5 kWh/(P.E.∙a) energy demand and result in 24 kWh/(P.E.∙a) energy recovery potential, enabling the mainstream deammonification model plant to be self-sufficient. The retrofitting costs for the implementation of mainstream deammonification in existing conventional MWWTPs are nearly negligible as the existing units like activated sludge reactors, aerators and monitoring technology are reusable. However, the mainstream deammonification must meet the performance requirement of VNRR of about 50 gN/(m3∙d) in this case.

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Dheeraja CheenakulaORCiD, Kai Griebel, David Montag, Markus Grömping
DOI:https://doi.org/10.3389/fmicb.2023.1155235
ISSN:1664-302X
Titel des übergeordneten Werkes (Englisch):Frontiers in Microbiology
Verlag:Frontiers
Herausgeber:Xiaowu Huang
Dokumentart:Wissenschaftlicher Artikel
Sprache:Englisch
Erscheinungsjahr:2023
Datum der Publikation (Server):14.08.2023
Freies Schlagwort / Tag:anammox; energy efficiency; mainstream deammonification; nitrogen elimination; wastewater
Jahrgang:14
Ausgabe / Heft:11155235
Erste Seite:1
Letzte Seite:15
Link:https://doi.org/10.3389/fmicb.2023.1155235
Zugriffsart:weltweit
Fachbereiche und Einrichtungen:FH Aachen / Fachbereich Bauingenieurwesen
FH Aachen / Nowum-Energy
collections:Verlag / Frontiers
Open Access / Gold
Lizenz (Deutsch):License LogoCreative Commons - Namensnennung