Refine
Year of publication
Document Type
- Article (123)
- Conference Proceeding (57)
- Part of a Book (12)
- Lecture (3)
- Book (2)
- Doctoral Thesis (1)
- Other (1)
- Patent (1)
- Review (1)
Keywords
- Finite-Elemente-Methode (16)
- Einspielen <Werkstoff> (13)
- shakedown analysis (8)
- FEM (6)
- limit analysis (5)
- Einspielanalyse (4)
- Limit analysis (4)
- Shakedown (4)
- Shakedown analysis (4)
- Technische Mechanik (4)
- Traglast (4)
- Traglastanalyse (4)
- shakedown (4)
- ratchetting (3)
- Analytischer Zulaessigkeitsnachweis (2)
- Bruchmechanik (2)
- Druckbeanspruchung (2)
- Druckbehälter (2)
- Druckbelastung (2)
- Einspiel-Analyse (2)
Institute
- Fachbereich Medizintechnik und Technomathematik (201) (remove)
This work is an attempt to answer the question: How to use convex programming in shakedown analysis of structures made of materials with temperature-dependent properties. Based on recently established shakedown theorems and formulations, a dual relationship between upper and lower bounds of the shakedown limit load is found, an algorithmfor shakedown analysis is proposed. While the original problem is neither convex nor concave, the algorithm presented here has the advantage of employing convex programming tools.
We propose a stochastic programming method to analyse limit and shakedown of structures under random strength with lognormal distribution. In this investigation a dual chance constrained programming algorithm is developed to calculate simultaneously both the upper and lower bounds of the plastic collapse limit or the shakedown limit. The edge-based smoothed finite element method (ES-FEM) using three-node linear triangular elements is used.
Proceedings of the International Conference on Material Theory and Nonlinear Dynamics. MatDyn. Hanoi, Vietnam, Sept. 24-26, 2007, 8 p. In this paper, a method is introduced to determine the limit load of general shells using the finite element method. The method is based on an upper bound limit and shakedown analysis with elastic-perfectly plastic material model. A non-linear constrained optimisation problem is solved by using Newton’s method in conjunction with a penalty method and the Lagrangean dual method. Numerical investigation of a pipe bend subjected to bending moments proves the effectiveness of the algorithm.
A procedure for the evaluation of the failure probability of elastic-plastic thin shell structures is presented. The procedure involves a deterministic limit and shakedown analysis for each probabilistic iteration which is based on the kinematical approach and the use the exact Ilyushin yield surface. Based on a direct definition of the limit state function, the non-linear problems may be efficiently solved by using the First and Second Order Reliabiblity Methods (Form/SORM). This direct approach reduces considerably the necessary knowledge of uncertain technological input data, computing costs and the numerical error. In: Computational plasticity / ed. by Eugenio Onate. Dordrecht: Springer 2007. VII, 265 S. (Computational Methods in Applied Sciences ; 7) (COMPLAS IX. Part 1 . International Center for Numerical Methods in Engineering (CIMNE)). ISBN 978-1-402-06576-7 S. 186-189