Refine
Year of publication
Document Type
- Article (96)
- Conference Proceeding (46)
- Part of a Book (12)
- Lecture (3)
- Book (1)
- Other (1)
- Patent (1)
- Review (1)
Keywords
- Finite-Elemente-Methode (7)
- Einspielen <Werkstoff> (4)
- Limit analysis (4)
- Shakedown analysis (3)
- Technische Mechanik (3)
- Analytischer Zulaessigkeitsnachweis (2)
- Bruchmechanik (2)
- Einspiel-Analyse (2)
- FEM (2)
- Shakedown (2)
- ratchetting (2)
- shakedown (2)
- shakedown analysis (2)
- Alternating plasticity (1)
- Anastomose (1)
- Anastomosis (1)
- Arthosetherapie (1)
- Aufschlagversuch (1)
- Axialbelastung (1)
- Axially cracked pipe (1)
Institute
- IfB - Institut für Bioengineering (161) (remove)
Die fibulare Bandruptur zählt zu einer der am häufigsten auftretenden Verletzungen des
Bewegungsapparats. In den meisten Fällen wird heute die konservativ frühfunktionelle Therapie mit Sprunggelenkorthesen allgemein bevorzugt. Im Rahmen der vorliegenden Studie wurden 14 verschiedene Sprunggelenkorthesen im Hinblick auf ihre Einschränkung von Taluskippung und Talusvorschub
untersucht. Zur Simulation einer fibularen Bandruptur wurde ein Unterschenkelmodell aus Holz mit Fußteil, mit angelegten Orthesen in einen Scheuba-Halteapparat eingespannt und mit 150 N seitlich sowie anterior-posterior belastet. Anhand der erstellten "gehaltenen" Röntgenaufnahmen konnten Taluskippung und Talusvorschub jeder einzelnen Orthese eindeutig bestimmt werden. Die meisten Orthesen erreichten zufriedenstellende Ergebnisse. Es stellte sich heraus, dass vor allem eine eng anliegende, im Gelenkbereich anatomisch angepasste Form vorteilhaft zu sein scheint.
Structural design analyses are conducted with the aim of verifying the exclusion of ratcheting. To this end it is important to make a clear distinction between the shakedown range and the ratcheting range. In cyclic plasticity more sophisticated hardening models have been suggested in order to model the strain evolution observed in ratcheting experiments. The hardening models used in shakedown analysis are comparatively simple. It is shown that shakedown analysis can make quite stable predictions of admissible load ranges despite the simplicity of the underlying hardening models. A linear and a nonlinear kinematic hardening model of two-surface plasticity are compared in material shakedown analysis. Both give identical or similar shakedown ranges. Structural shakedown analyses show that the loading may have a more pronounced effect than the hardening model.