Refine
Year of publication
Document Type
- Article (128)
- Conference Proceeding (58)
- Part of a Book (12)
- Lecture (3)
- Book (2)
- Report (2)
- Doctoral Thesis (1)
- Other (1)
- Patent (1)
- Review (1)
Keywords
- Finite-Elemente-Methode (16)
- Einspielen <Werkstoff> (13)
- shakedown analysis (8)
- FEM (6)
- limit analysis (5)
- Einspielanalyse (4)
- Limit analysis (4)
- Shakedown (4)
- Shakedown analysis (4)
- Technische Mechanik (4)
- Traglast (4)
- Traglastanalyse (4)
- shakedown (4)
- ratchetting (3)
- Analytischer Zulaessigkeitsnachweis (2)
- Bruchmechanik (2)
- Druckbeanspruchung (2)
- Druckbehälter (2)
- Druckbelastung (2)
- Einspiel-Analyse (2)
Institute
- Fachbereich Medizintechnik und Technomathematik (209) (remove)
Virgin passive colon biomechanics and a literature review of active contraction constitutive models
(2022)
The objective of this paper is to present our findings on the biomechanical aspects of the virgin passive anisotropic hyperelasticity of the porcine colon based on equibiaxial tensile experiments. Firstly, the characterization of the intestine tissues is discussed for a nearly incompressible hyperelastic fiber-reinforced Holzapfel–Gasser–Ogden constitutive model in virgin passive loading conditions. The stability of the evaluated material parameters is checked for the polyconvexity of the adopted strain energy function using positive eigenvalue constraints of the Hessian matrix with MATLAB. The constitutive material description of the intestine with two collagen fibers in the submucosal and muscular layer each has been implemented in the FORTRAN platform of the commercial finite element software LS-DYNA, and two equibiaxial tensile simulations are presented to validate the results with the optical strain images obtained from the experiments. Furthermore, this paper also reviews the existing models of the active smooth muscle cells, but these models have not been computationally studied here. The review part shows that the constitutive models originally developed for the active contraction of skeletal muscle based on Hill’s three-element model, Murphy’s four-state cross-bridge chemical kinetic model and Huxley’s sliding-filament hypothesis, which are mainly used for arteries, are appropriate for numerical contraction numerical analysis of the large intestine.
A generalized shear-lag theory for fibres with variable radius is developed to analyse elastic fibre/matrix stress transfer. The theory accounts for the reinforcement of biological composites, such as soft tissue and bone tissue, as well as for the reinforcement of technical composite materials, such as fibre-reinforced polymers (FRP). The original shear-lag theory proposed by Cox in 1952 is generalized for fibres with variable radius and with symmetric and asymmetric ends. Analytical solutions are derived for the distribution of axial and interfacial shear stress in cylindrical and elliptical fibres, as well as conical and paraboloidal fibres with asymmetric ends. Additionally, the distribution of axial and interfacial shear stress for conical and paraboloidal fibres with symmetric ends are numerically predicted. The results are compared with solutions from axisymmetric finite element models. A parameter study is performed, to investigate the suitability of alternative fibre geometries for use in FRP.
A new formulation to calculate the shakedown limit load of Kirchhoff plates under stochastic conditions of strength is developed. Direct structural reliability design by chance con-strained programming is based on the prescribed failure probabilities, which is an effective approach of stochastic programming if it can be formulated as an equivalent deterministic optimization problem. We restrict uncertainty to strength, the loading is still deterministic. A new formulation is derived in case of random strength with lognormal distribution. Upper bound and lower bound shakedown load factors are calculated simultaneously by a dual algorithm.
Pressure distribution to the distal biceps tendon at the radial tuberosity: a biomechanical study
(2020)
Combining physiological relevance and throughput for in vitro cardiac contractility measurement
(2020)
A new in vitro tool to investigate cardiac contractility under physiological mechanical conditions
(2019)
Numerical methods for limit and shakedown analysis. Deterministic and probabilistic problems.
(2003)
3rd YRA MedTech Symposium. YRA - Young Researchers Academy, MedTech in NRW, May 24, 2019, FH Aachen
(2019)
Kyphoplasty of Osteoporotic Fractured Vertebrae: A Finite Element Analysis about Two Types of Cement
(2019)
System und Verfahren zur Durchführung von Messungen biaxialer und kreuzförmiger Zugversuche, wobei ein Weg oder eine Kraft auf eine Materialprobe über mindestens zwei Nadelarme mit Nadeln geleitet wird, die in einem Gehäuse gelagert sind, wobei die Arme und/oder Nadelarme für eine ungehinderte Querkontraktion bei gleichmäßiger Lasteinleitung um eine Achse drehbar gelagert und seitlich auslenkbar sind.
Rezension zu: K. Zimmermann, Technische Mechanik – multimedial. Fachbuch Verlag Leipzig (2000)
(2002)
Postural and metabolic benefits of using a forearm support walker in older adults with impairments
(2019)
The overall objective of this study is to develop a new external fixator, which closely maps the native kinematics of the elbow to decrease the joint force resulting in reduced rehabilitation time and pain. An experimental setup was designed to determine the native kinematics of the elbow during flexion of cadaveric arms. As a preliminary study, data from literature was used to modify a published biomechanical model for the calculation of the joint and muscle forces. They were compared to the original model and the effect of the kinematic refinement was evaluated. Furthermore, the obtained muscle forces were determined in order to apply them in the experimental setup. The joint forces in the modified model differed slightly from the forces in the original model. The muscle force curves changed particularly for small flexion angles but their magnitude for larger angles was consistent.
Electromechanical model of hiPSC-derived ventricular cardiomyocytes cocultured with fibroblasts
(2018)
The CellDrum provides an experimental setup to study the mechanical effects of fibroblasts co-cultured with hiPSC-derived ventricular cardiomyocytes. Multi-scale computational models based on the Finite Element Method are developed. Coupled electrical cardiomyocyte-fibroblast models (cell level) are embedded into reaction-diffusion equations (tissue level) which compute the propagation of the action potential in the cardiac tissue. Electromechanical coupling is realised by an excitation-contraction model (cell level) and the active stress arising during contraction is added to the passive stress in the force balance, which determines the tissue displacement (tissue level). Tissue parameters in the model can be identified experimentally to the specific sample.
We propose a stochastic programming method to analyse limit and shakedown of structures under random strength with lognormal distribution. In this investigation a dual chance constrained programming algorithm is developed to calculate simultaneously both the upper and lower bounds of the plastic collapse limit or the shakedown limit. The edge-based smoothed finite element method (ES-FEM) using three-node linear triangular elements is used.
The vaginal prolapse after hysterectomy (removal of the uterus) is often associated with the prolapse of the vaginal vault, rectum, bladder, urethra or small bowel. Minimally
invasive surgery such as laparoscopic sacrocolpopexy and pectopexy are widely performed for the treatment of the vaginal prolapse with weakly supported vaginal vault after hysterectomy using prosthetic mesh implants to support (or strengthen) lax apical ligaments. Implants of different shape, size and polymers are selected depending on the patient’s anatomy and the surgeon’s preference. In this computational study on pectopexy, DynaMesh®-PRP soft, GYNECARE GYNEMESH® PS Nonabsorbable PROLENE® soft and Ultrapro® are tested in a 3D finite element model of the female pelvic floor. The mesh model is implanted into the extraperitoneal space and sutured to the vaginal stump with a bilateral fixation to the iliopectineal ligament at both sides. Numerical simulations are conducted at rest, after surgery and during Valsalva maneuver with weakened tissues modeled by reduced tissue stiffness. Tissues and prosthetic meshes are modeled as incompressible, isotropic hyperelastic materials. The positions of the organs are calculated with respect to the pubococcygeal line (PCL) for female pelvic floor at rest, after repair and during Valsalva maneuver using the three meshes.
Biomechanical simulation of different prosthetic meshes for repairing uterine/vaginal vault prolapse
(2017)
Analysis of the long-term effect of the MBST® nuclear magnetic resonance therapy on gonarthrosis
(2016)
Smoothed Finite Element Methods for Nonlinear Solid Mechanics Problems: 2D and 3D Case Studies
(2016)
The Smoothed Finite Element Method (SFEM) is presented as an edge-based and a facebased techniques for 2D and 3D boundary value problems, respectively. SFEMs avoid shortcomings of the standard Finite Element Method (FEM) with lower order elements such as overly stiff behavior, poor stress solution, and locking effects. Based on the idea of averaging spatially the standard strain field of the FEM over so-called smoothing domains SFEM calculates the stiffness matrix for the same number of degrees of freedom (DOFs) as those of the FEM. However, the SFEMs significantly improve accuracy and convergence even for distorted meshes and/or nearly incompressible materials.
Numerical results of the SFEMs for a cardiac tissue membrane (thin plate inflation) and an artery (tension of 3D tube) show clearly their advantageous properties in improving accuracy particularly for the distorted meshes and avoiding shear locking effects.
Influence of refrigerated storage on tensile mechanical properties of porcine liver and spleen
(2015)