### Refine

#### Year of publication

#### Document Type

- Article (97)
- Conference Proceeding (46)
- Part of a Book (12)
- Lecture (3)
- Book (1)
- Other (1)
- Patent (1)
- Review (1)

#### Keywords

- Finite-Elemente-Methode (7)
- Einspielen <Werkstoff> (4)
- Limit analysis (4)
- Shakedown analysis (3)
- Technische Mechanik (3)
- Analytischer Zulaessigkeitsnachweis (2)
- Bruchmechanik (2)
- Einspiel-Analyse (2)
- FEM (2)
- Shakedown (2)
- ratchetting (2)
- shakedown (2)
- shakedown analysis (2)
- Alternating plasticity (1)
- Anastomose (1)
- Anastomosis (1)
- Arthosetherapie (1)
- Aufschlagversuch (1)
- Axialbelastung (1)
- Axially cracked pipe (1)

#### Institute

- IfB - Institut für Bioengineering (162) (remove)

Rezension zu: K. Zimmermann, Technische Mechanik – multimedial. Fachbuch Verlag Leipzig (2000)
(2002)

Structural design analyses are conducted with the aim of verifying the exclusion of ratcheting. To this end it is important to make a clear distinction between the shakedown range and the ratcheting range. In cyclic plasticity more sophisticated hardening models have been suggested in order to model the strain evolution observed in ratcheting experiments. The hardening models used in shakedown analysis are comparatively simple. It is shown that shakedown analysis can make quite stable predictions of admissible load ranges despite the simplicity of the underlying hardening models. A linear and a nonlinear kinematic hardening model of two-surface plasticity are compared in material shakedown analysis. Both give identical or similar shakedown ranges. Structural shakedown analyses show that the loading may have a more pronounced effect than the hardening model.

Structural design analyses are conducted with the aim of verifying the exclusion of ratchetting. To this end it is important to make a clear distinction between the shakedown range and the ratchetting range. The performed experiment comprised a hollow tension specimen which was subjected to alternating axial forces, superimposed with constant moments. First, a series of uniaxial tests has been carried out in order to calibrate a bounded kinematic hardening rule. The load parameters have been selected on the basis of previous shakedown analyses with the PERMAS code using a kinematic hardening material model. It is shown that this shakedown analysis gives reasonable agreement between the experimental and the numerical results. A linear and a nonlinear kinematic hardening model of two-surface plasticity are compared in material shakedown analysis.

This paper presents the direct route to Design by Analysis (DBA) of the new European pressure vessel standard in the language of limit and shakedown analysis (LISA). This approach leads to an optimization problem. Its solution with Finite Element Analysis is demonstrated for some examples from the DBA-Manual. One observation from the examples is, that the optimisation approach gives reliable and close lower bound solutions leading to simple and optimised design decision.

Numerical methods for limit and shakedown analysis. Deterministic and probabilistic problems.
(2003)

An optimization method is developed to describe the mechanical behaviour of the human cancellous bone. The method is based on a mixture theory. A careful observation of the behaviour of the bone material leads to the hypothesis that the bone density is controlled by the principal stress trajectories (Wolff’s law). The basic idea of the developed method is the coupling of a scalar value via an eigenvalue problem to the principal stress trajectories. On the one hand this theory will permit a prediction of the reaction of the biological bone structure after the implantation of a prosthesis, on the other hand it may be useful in engineering optimization problems. An analytical example shows its efficiency.

This work is an attempt to answer the question: How to use convex programming in shakedown analysis of structures made of materials with temperature-dependent properties. Based on recently established shakedown theorems and formulations, a dual relationship between upper and lower bounds of the shakedown limit load is found, an algorithmfor shakedown analysis is proposed. While the original problem is neither convex nor concave, the algorithm presented here has the advantage of employing convex programming tools.

Improved collapse loads of thick-walled, crack containing pipes and vessels are suggested. Very deep cracks have a residual strength which is better modelled by a global limit load. In all burst tests, the ductility of pressure vessel steels was sufficiently high whereby the burst pressure could be predicted by limit analysis with no need to apply fracture mechanics. The relative prognosis error increases however, for long and deep defects due to uncertainties of geometry and strength data.

Limit loads can be calculated with the finite element method (FEM) for any component, defect geometry, and loading. FEM suggests that published long crack limit formulae for axial defects under-estimate the burst pressure for internal surface defects in thick pipes while limit loads are not conservative for deep cracks and for pressure loaded crack-faces. Very deep cracks have a residual strength, which is modelled by a global collapse load. These observations are combined to derive new analytical local and global collapse loads. The global collapse loads are close to FEM limit analyses for all crack dimensions.

In the new European standard for unfired pressure vessels, EN 13445-3, there are two approaches for carrying out a Design-by-Analysis that cover both the stress categorization method (Annex C) and the direct route method (Annex B) for a check against global plastic deformation and against progressive plastic deformation. This paper presents the direct route in the language of limit and shakedown analysis. This approach leads to an optimization problem. Its solution with Finite Element Analysis is demonstrated for mechanical and thermal actions. One observation from the examples is that the so-called 3f (3Sm) criterion fails to be a reliable check against progressive plastic deformation. Precise conditions are given, which greatly restrict the applicability of the 3f criterion.