Refine
Year of publication
- 2010 (319) (remove)
Document Type
- Article (173)
- Conference Proceeding (70)
- Book (38)
- Part of a Book (19)
- Patent (7)
- Report (4)
- Other (2)
- Part of Periodical (2)
- Contribution to a Periodical (1)
- Doctoral Thesis (1)
- Master's Thesis (1)
- Talk (1)
Language
- English (175)
- German (143)
- Multiple languages (1)
Keywords
- Aachen / Fachhochschule Aachen (3)
- Aachen University of Applied Sciences (3)
- FH Aachen (2)
- Geschichte (2)
- avalanche (2)
- Dekontamination (1)
- Endothelzelle (1)
- Erythrozyt (1)
- Fachhochschule Aachen (1)
- Forschungsbericht (1)
- Graduiertentagung (1)
- Hämoglobin (1)
- Illustration (1)
- Kohlenstofffaser (1)
- Körpertemperatur (1)
- Lipopolysaccharide (1)
- Natriumhypochlorit (1)
- RAMMS (1)
- Research Report (1)
- Sepsis (1)
Institute
- Fachbereich Medizintechnik und Technomathematik (72)
- IfB - Institut für Bioengineering (40)
- Fachbereich Wirtschaftswissenschaften (39)
- Fachbereich Elektrotechnik und Informationstechnik (33)
- Fachbereich Maschinenbau und Mechatronik (31)
- Fachbereich Energietechnik (29)
- Fachbereich Chemie und Biotechnologie (26)
- INB - Institut für Nano- und Biotechnologien (24)
- Fachbereich Bauingenieurwesen (23)
- Fachbereich Luft- und Raumfahrttechnik (22)
- Fachbereich Architektur (14)
- Solar-Institut Jülich (13)
- Fachbereich Gestaltung (5)
- Sonstiges (5)
- FH Aachen (4)
- ZHQ - Bereich Hochschuldidaktik und Evaluation (2)
- ECSM European Center for Sustainable Mobility (1)
Solar sails provide ignificant advantages over other low-thrust propulsion systems because they produce thrust by the momentum exchange from solar radiation pressure (SRP) and thus do not consume any propellant.The force exerted on a very thin sail foil basically depends on the light incidence angle. Several analytical SRP force models that describe the SRP force acting on the sail have been established since the 1970s. All the widely used models use constant optical force coefficients of the reflecting sail material. In 2006,MENGALI et al. proposed a refined SRP force model that takes into account the dependancy of the force coefficients on the light incident angle,the sail’s distance from the sun (and thus the sail emperature) and the surface roughness of the sail material [1]. In this paper, the refined SRP force model is compared to the previous ones in order to identify the potential impact of the new model on the predicted capabilities of solar sails in performing low-cost interplanetary space missions. All force models have been implemented within InTrance, a global low-thrust trajectory optimization software utilizing evolutionary neurocontrol [2]. Two interplanetary rendezvous missions, to Mercury and the near-Earth asteroid 1996FG3, are investigated. Two solar sail performances in terms of characteristic acceleration are examined for both scenarios, 0.2 mm/s2 and 0.5 mm/s2, termed “low” and “medium” sail performance. In case of the refined SRP model, three different values of surface roughness are chosen, h = 0 nm, 10 nm and 25 nm. The results show that the refined SRP force model yields shorter transfer times than the standard model.
Solar sails are large and lightweight reflective structures that are propelled by solar radiation pressure. This chapter covers their orbital and attitude dynamics and control. First, the advantages and limitations of solar sails are discussed and their history and development status is outlined. Because the dynamics of solar sails is governed by the (thermo-)optical properties of the sail film, the basic solar radiation pressure force models have to be described and compared before parameters to measure solar sail performance can be defined. The next part covers the orbital dynamics of solar sails for heliocentric motion, planetocentric motion, and motion at Lagrangian equilibrium points. Afterwards, some advanced solar radiation pressure force models are described, which allow to quantify the thrust force on solar sails of arbitrary shape, the effects of temperature, of light incidence angle, of surface roughness, and the effects of optical degradation of the sail film in the space environment. The orbital motion of a solar sail is strongly coupled to its rotational motion, so that the attitude control of these soft and flexible structures is very challenging, especially for planetocentric orbits that require fast attitude maneuvers. Finally, some potential attitude control methods are sketched and selection criteria are given.
Beobachtungskommunikation
(2010)
Betriebsratswahlen 2010
(2010)
Epilepsy
(2010)
Ein viel versprechender erneuerbarer Rohstoff für die Produktion von Chemikalien und Treibstoffen ist Lignocellulose aus pflanzlicher Biomasse. Die darin enthaltenen Zucker können mittels enzymatischer Hydrolyse freigesetzt und fermentativ zu Ethanol umgesetzt werden. Ein interessanter Ansatz ist dabei die simultane Verzuckerung und Fermentation. Hefen und Enzyme haben mit 30 °C bzw. 50 °C zwar unterschiedliche Temperaturoptima, es konnte aber gezeigt werden, dass auch bei den niedrigeren Temperaturen eine Umsetzung der Cellulose zu Glucose erfolgt, wenn auch langsamer als bei optimalen Bedingungen. Außerdem konnte in Vorversuchen gezeigt werden, dass Ethanol in den zu erwartenden Konzentrationen keinen Einfluss auf die enzymatische Umsetzung hat.
Grassilage als Rohstoff für diechemische IndustrieTim Sieker, Andreas Neuner, Darina Dimitrova, Nils Tippkötter,Hans-Jörg Bart, Elmar Heinzle und Roland Ulber*Grassilage stellt einen nachwachsenden Rohstoff mit großem Potenzial dar. Neben Cellu-lose und Hemicellulose enthält sie auch organische Säuren, insbesondere Milchsäure. Ineinem Bioraffinerie-Projekt wird die Milchsäure aus der Silage isoliert und mit gentech-nisch optimierten Stämmen zu L-Lysin weiterverarbeitet. Die Lignocellulose wird hydroly-siert und zu Ethanol fermentiert. Ein besonderes Augenmerk liegt auf der Integration derunterschiedlichen Prozesse sowie der einzelnen Prozessschritte zu einem Gesamtprozess,der sämtliche Inhaltsstoffe der Silage verwertet.
Paracoccus denitrificans for the effluent recycling during continuous denitrification of liquid food
(2010)
Nitrate is an undesirable component of several foods. A typical case of contamination with high nitrate contents is whey concentrate, containing nitrate in concentrations up to 25 l. The microbiological removal of nitrate by Paracoccus denitrificans under formation of harmless nitrogen in combination with a cell retention reactor is described here. Focus lies on the resource-conserving design of a microbal denitrification process. Two methods are compared. The application of polyvinyl alcohol-immobilized cells, which can be applied several times in whey feed, is compared with the implementation of a two step denitrification system. First, the whey concentrate's nitrate is removed by ion exchange and subsequently the eluent regenerated by microorganisms under their retention by crossflow filtration. Nitrite and nitrate concentrations were determined by reflectometric color measurement with a commercially available Reflectoquant® device. Correction factors for these media had to be determined. During the pilot development, bioreactors from 4 to 250 mg·L-1 and crossflow units with membrane areas from 0.02 to 0.80 m2 were examined. Based on the results of the pilot plants, a scaling for the exemplary process of denitrifying 1,000 tons per day is discussed.