Refine
Year of publication
Document Type
- Article (1479)
- Conference Proceeding (201)
- Book (86)
- Part of a Book (41)
- Doctoral Thesis (23)
- Patent (17)
- Other (5)
- Habilitation (3)
- Lecture (3)
- Report (2)
- Course Material (1)
- Review (1)
Keywords
- Biosensor (25)
- Finite-Elemente-Methode (16)
- CAD (15)
- civil engineering (14)
- Bauingenieurwesen (13)
- Einspielen <Werkstoff> (13)
- shakedown analysis (8)
- FEM (6)
- Clusterion (5)
- limit analysis (5)
- Air purification (4)
- Einspielanalyse (4)
- Hämoglobin (4)
- Limit analysis (4)
- Luftreiniger (4)
- Plasmacluster ion technology (4)
- Raumluft (4)
- Shakedown (4)
- Shakedown analysis (4)
- Technische Mechanik (4)
Institute
- Fachbereich Medizintechnik und Technomathematik (1862) (remove)
Λ, Image production in e+e- annihilation at 33 GeV centre of mass energy. TASSO Collaboration
(1981)
π0 production by e+e− annihilation at 14 and 34 GeV c.m. energy . TASSO Collaboration
(1982)
3rd YRA MedTech Symposium. YRA - Young Researchers Academy, MedTech in NRW, May 24, 2019, FH Aachen
(2019)
A 3D finite element model of the female pelvic floor for the reconstruction of urinary incontinence
(2014)
A Classical Reformulation of Finite-Dimensional Quantum Mechanics. Hellwig, K.-E.; Stulpe, W.
(1993)
The readout of gamma detectors is considerably simplified when the event intensity is encoded as a pulse width (Pulse Width Modulation, PWM). Time-to-Digital-Converters (TDC) replace the conventional ADCs and multiple TDCs can be realized easily in one PLD chip (Programmable Logic Device). The output of a PWM stage is only one digital signal per channel which is well suited for transport so that further processing can be performed apart from the detector. This is particularly interesting for large systems with high channel density (e.g. high resolution scanners). In this work we present a circuit with a linear transfer function that requires a minimum of components by performing the PWM already in the preamp stage. This allows a very compact and also cost-efficient implementation of the front-end electronics.
A concept for a sensitive micro total analysis system for high throughput fluorescence imaging
(2006)
This paper discusses possible methods for on-chip fluorescent imaging for integrated bio-sensors. The integration of optical and electro-optical accessories, according to suggested methods, can improve the performance of fluorescence imaging. It can boost the signal to background ratio by a few orders of magnitudes in comparison to conventional discrete setups. The methods that are present in this paper are oriented towards building reproducible arrays for high-throughput micro total analysis systems (µTAS). The first method relates to side illumination of the fluorescent material placed into microcompartments of the lab-on-chip. Its significance is in high utilization of excitation energy for low concentration of fluorescent material. The utilization of a transparent µLED chip, for the second method, allows the placement of the excitation light sources on the same optical axis with emission detector, such that the excitation and emission rays are directed controversly. The third method presents a spatial filtering of the excitation background.
A melting probe equipped with autofluorescence-based detection system combined with a light scattering unit, and, optionally, with a microarray chip would be ideally suited to probe icy environments like Europa’s ice layer as well as the polar ice layers of Earth and Mars for recent and extinct live.
A Formulation of Quantum Stochastic Processes and Some of its Properties. Hellwig, K.-E.; Stulpe, W.
(1983)