Refine
Year of publication
Document Type
- Article (626)
- Conference Proceeding (286)
- Book (112)
- Part of a Book (59)
- Patent (12)
- Report (9)
- Other (8)
- Contribution to a Periodical (6)
- Course Material (6)
- Doctoral Thesis (6)
- Video (1)
- Poster (1)
- Review (1)
- Talk (1)
Language
- English (683)
- German (450)
- Multiple languages (1)
Keywords
- Multimediamarkt (7)
- Enterprise Architecture (5)
- MINLP (5)
- Engineering optimization (4)
- Auslenkung (3)
- Digitale Transformation (3)
- Javasimulation (3)
- Literaturanalyse (3)
- Optimization (3)
- Powertrain (3)
- Referenzmodellierung (3)
- Robotic Process Automation (3)
- Serious Game (3)
- Technical Operations Research (3)
- Telecommunication (3)
- Amplitude (2)
- Autonomous mobile robots (2)
- Competence Developing Games (2)
- Content Management (2)
- Digitalisierung (2)
Institute
- Fachbereich Elektrotechnik und Informationstechnik (1134) (remove)
Dieses Lehr- und Fachbuch vermittelt anschaulich die Grundlagen der HF-Technik, gibt konkrete Beschreibungen für den Entwurf von linearen Komponenten aus Bauteilen wie auch Leitungen für High-Speed- und HF-Schaltungen. Dem Leser wird vermittelt, wie Bauteile modelliert und Schaltungen synthetisiert und optimiert werden. Mit Hilfe frei verfügbarer Simulationssoftware können GHz-Schaltungen selbst entwickelt werden. Viele Übungsbeispiele ermöglichen die Eigenkontrolle des Wissensstandes. Weiterhin werden komplexe nichtlineare Komponenten wie Hochfrequenzmischer, Oszillatoren und Synthesegeneratoren in ihrer Funktionalität dargestellt. Die neuen Mixed-Mode-Streuparameter sowie deren Leitungs- und Schaltungstechnik für Anwendungen der schnellen Digital- und der modernen HF-Technik sind ausführlich beschrieben. Es wird auf Systeme für folgende Bereiche eingegangen: Streuparametermesstechnik, verschiedene Funktechniken, UHF-RFID und Lokalisierung- und Ortung. Dem Leser wird somit ermöglicht, komplexe GHz-Schaltungen insbesondere mit Halbleiter-, SMD- und LTCC-Schaltungen zu entwickeln.
Clinical assessment of newly developed sensors is important for ensuring their validity. Comparing recordings of emerging electrocardiography (ECG) systems to a reference ECG system requires accurate synchronization of data from both devices. Current methods can be inefficient and prone to errors. To address this issue, three algorithms are presented to synchronize two ECG time series from different recording systems: Binned R-peak Correlation, R-R Interval Correlation, and Average R-peak Distance. These algorithms reduce ECG data to their cyclic features, mitigating inefficiencies and minimizing discrepancies between different recording systems. We evaluate the performance of these algorithms using high-quality data and then assess their robustness after manipulating the R-peaks. Our results show that R-R Interval Correlation was the most efficient, whereas the Average R-peak Distance and Binned R-peak Correlation were more robust against noisy data.
The problem of fair and privacy-preserving ordered set reconciliation arises in a variety of applications like auctions, e-voting, and appointment reconciliation. While several multi-party protocols have been proposed that solve this problem in the semi-honest model, there are no multi-party protocols that are secure in the malicious model so far. In this paper, we close this gap. Our newly proposed protocols are shown to be secure in the malicious model based on a variety of novel non-interactive zero-knowledge-proofs. We describe the implementation of our protocols and evaluate their performance in comparison to protocols solving the problem in the semi-honest case.
The RoboCup Logistics League (RCLL) is a robotics competition in a production logistics scenario in the context of a Smart Factory. In the competition, a team of three robots needs to assemble products to fulfill various orders that are requested online during the game. This year, the Carologistics team was able to win the competition with a new approach to multi-agent coordination as well as significant changes to the robot’s perception unit and a pragmatic network setup using the cellular network instead of WiFi. In this paper, we describe the major components of our approach with a focus on the changes compared to the last physical competition in 2019.
Due to the increasing complexity of software projects, software development is becoming more and more dependent on teams. The quality of this teamwork can vary depending on the team composition, as teams are always a combination of different skills and personality types. This paper aims to answer the question of how to describe a software development team and what influence the personality of the team members has on the team dynamics. For this purpose, a systematic literature review (n=48) and a literature search with the AI research assistant Elicit (n=20) were conducted. Result: A person’s personality significantly shapes his or her thinking and actions, which in turn influences his or her behavior in software development teams. It has been shown that team performance and satisfaction can be strongly influenced by personality. The quality of communication and the likelihood of conflict can also be attributed to personality.
This paper presents an approach for reducing the cognitive load for humans working in quality control (QC) for production processes that adhere to the 6σ -methodology. While 100% QC requires every part to be inspected, this task can be reduced when a human-in-the-loop QC process gets supported by an anomaly detection system that only presents those parts for manual inspection that have a significant likelihood of being defective. This approach shows good results when applied to image-based QC for metal textile products.
Digital forensics of smartphones is of utmost importance in many criminal cases. As modern smartphones store chats, photos, videos etc. that can be relevant for investigations and as they can have storage capacities of hundreds of gigabytes, they are a primary target for forensic investigators. However, it is exactly this large amount of data that is causing problems: extracting and examining the data from multiple phones seized in the context of a case is taking more and more time. This bears the risk of wasting a lot of time with irrelevant phones while there is not enough time left to analyze a phone which is worth examination. Forensic triage can help in this case: Such a triage is a preselection step based on a subset of data and is performed before fully extracting all the data from the smartphone. Triage can accelerate subsequent investigations and is especially useful in cases where time is essential. The aim of this paper is to determine which and how much data from an Android smartphone can be made directly accessible to the forensic investigator – without tedious investigations. For this purpose, an app has been developed that can be used with extremely limited storage of data in the handset and which outputs the extracted data immediately to the forensic workstation in a human- and machine-readable format.
KNX is a protocol for smart building automation, e.g., for automated heating, air conditioning, or lighting. This paper analyses and evaluates state-of-the-art KNX devices from manufacturers Merten, Gira and Siemens with respect to security. On the one hand, it is investigated if publicly known vulnerabilities like insecure storage of passwords in software, unencrypted communication, or denialof-service attacks, can be reproduced in new devices. On the other hand, the security is analyzed in general, leading to the discovery of a previously unknown and high risk vulnerability related to so-called BCU (authentication) keys.
Nowadays, the most employed devices for recoding videos or capturing images are undoubtedly the smartphones. Our work investigates the application of source camera identification on mobile phones. We present a dataset entirely collected by mobile phones. The dataset contains both still images and videos collected by 67 different smartphones. Part of the images consists in photos of uniform backgrounds, especially collected for the computation of the RSPN. Identifying the source camera given a video is particularly challenging due to the strong video compression. The experiments reported in this paper, show the large variation in performance when testing an highly accurate technique on still images and videos.
Automated driving is now possible in diverse road and traffic conditions. However, there are still situations that automated vehicles cannot handle safely and efficiently. In this case, a Transition of Control (ToC) is necessary so that the driver takes control of the driving. Executing a ToC requires the driver to get full situation awareness of the driving environment. If the driver fails to get back the control in a limited time, a Minimum Risk Maneuver (MRM) is executed to bring the vehicle into a safe state (e.g., decelerating to full stop). The execution of ToCs requires some time and can cause traffic disruption and safety risks that increase if several vehicles execute ToCs/MRMs at similar times and in the same area. This study proposes to use novel C-ITS traffic management measures where the infrastructure exploits V2X communications to assist Connected and Automated Vehicles (CAVs) in the execution of ToCs. The infrastructure can suggest a spatial distribution of ToCs, and inform vehicles of the locations where they could execute a safe stop in case of MRM. This paper reports the first field operational tests that validate the feasibility and quantify the benefits of the proposed infrastructure-assisted ToC and MRM management. The paper also presents the CAV and roadside infrastructure prototypes implemented and used in the trials. The conducted field trials demonstrate that infrastructure-assisted traffic management solutions can reduce safety risks and traffic disruptions.