• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Administration
  • FAQ

Refine

Author

  • Alex Fisher (3)
  • Andreas Thoma (3)
  • Carsten Braun (3)
  • Alessandro G. Gardi (1)
  • Luc Stiemer (1)
  • Olivier Bertrand (1)

Year of publication

  • 2023 (1)
  • 2020 (2)

Keywords

  • Bumblebees (1)
  • Flight control (1)
  • MAV (1)
  • Obstacle avoidance (1)
  • UAV (1)

Institute

  • ECSM European Center for Sustainable Mobility (3)
  • Fachbereich Luft- und Raumfahrttechnik (3)

3 search hits

  • 1 to 3
  • BibTeX
  • CSV
  • RIS
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Improving the px4 avoid algorithm by bio-inspired flight strategies (2020)
Andreas Thoma ; Alex Fisher ; Carsten Braun
Evaluation of possible flight strategies for close object evasion from bumblebee experiments (2020)
Andreas Thoma ; Alex Fisher ; Olivier Bertrand ; Carsten Braun
Potential of hybrid neural network local path planner for small UAV in urban environments (2023)
Andreas Thoma ; Luc Stiemer ; Carsten Braun ; Alex Fisher ; Alessandro G. Gardi
This work proposes a hybrid algorithm combining an Artificial Neural Network (ANN) with a conventional local path planner to navigate UAVs efficiently in various unknown urban environments. The proposed method of a Hybrid Artificial Neural Network Avoidance System is called HANNAS. The ANN analyses a video stream and classifies the current environment. This information about the current Environment is used to set several control parameters of a conventional local path planner, the 3DVFH*. The local path planner then plans the path toward a specific goal point based on distance data from a depth camera. We trained and tested a state-of-the-art image segmentation algorithm, PP-LiteSeg. The proposed HANNAS method reaches a failure probability of 17%, which is less than half the failure probability of the baseline and around half the failure probability of an improved, bio-inspired version of the 3DVFH*. The proposed HANNAS method does not show any disadvantages regarding flight time or flight distance.
  • 1 to 3

OPUS4 Logo

  • Contact
  • Imprint
  • Datenschutzerklärung
  • Sitelinks