• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Administration
  • FAQ

Refine

Author

  • Andreas Backes (6)
  • Felix Hüning (4)
  • Fabian Mainz (2)
  • Hanno Volker (2)
  • Jonas Wiegner (2)
  • Klaus Dilger (2)
  • Mark Hellmanns (2)
  • Stefan Böhm (2)
  • Michael Loeken (1)
  • Michael Löken (1)

Year of publication

  • 2023 (1)
  • 2022 (2)
  • 2020 (1)
  • 2006 (2)

Document Type

  • Article (3)
  • Conference Proceeding (2)
  • Patent (1)

Language

  • English (5)
  • German (1)

Institute

  • Fachbereich Elektrotechnik und Informationstechnik (4)
  • Fachbereich Energietechnik (2)

6 search hits

  • 1 to 6
  • BibTeX
  • CSV
  • RIS
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Lock-in thermography based NDT of automotive parts (2006)
Stefan Böhm ; Mark Hellmanns ; Andreas Backes ; Klaus Dilger
Lock-in thermography based NDT of parts for the automotive industry (2006)
Stefan Böhm ; Mark Hellmanns ; Andreas Backes ; Klaus Dilger
Wiegand-Modul (2022)
Felix Hüning ; Andreas Backes
Ein Wiegand-Modul (110;210;310) umfassend- eine Sensorspule (112;212;312),- einen ersten Wiegand-Draht (116a;216a;316a), der zumindest teilweise innerhalb der Sensorspule (112;212;312) angeordnet ist, und- einen zweiten Wiegand-Draht (116b;216b;316b), der zumindest teilweise innerhalb der Sensorspule (112;212;312) angeordnet ist und sich im Wesentlichen parallel zu dem ersten Wiegand-Draht (116a;216a;316a) erstreckt, ist bekannt.Um eine effiziente Ausnutzung der durch die Ummagnetisierung der Wiegand-Drähte (116a,116b;216a,216b;316a,316b) in die Sensorspule (112;212;312) induzierten elektrischen Energie zu ermöglichen, sind der erste Wiegand-Draht (116a;216a;316a) und der zweite Wiegand-Draht (116b;216b;316b) bezogen auf eine axiale Richtung der Sensorspule (112;212;312) versetzt zueinander angeordnet.
Direct observation of large Barkhausen jump in thin Vicalloy wires (2020)
Felix Hüning ; Andreas Backes
Wiegand-effect-powered wireless IoT sensor node (2022)
Jonas Wiegner ; Hanno Volker ; Fabian Mainz ; Andreas Backes ; Michael Löken ; Felix Hüning
In this article we describe an Internet-of-Things sensing device with a wireless interface which is powered by the oftenoverlooked harvesting method of the Wiegand effect. The sensor can determine position, temperature or other resistively measurable quantities and can transmit the data via an ultra-low power ultra-wideband (UWB) data transmitter. With this approach we can energy-self-sufficiently acquire, process, and wirelessly transmit data in a pulsed operation. A proof-of-concept system was built up to prove the feasibility of the approach. The energy consumption of the system is analyzed and traced back in detail to the individual components, compared to the generated energy and processed to identify further optimization options. Based on the proof-of-concept, an application demonstrator was developed. Finally, we point out possible use cases.
Energy analysis of a wireless sensor node powered by a Wiegand sensor (2023)
Jonas Wiegner ; Hanno Volker ; Fabian Mainz ; Andreas Backes ; Michael Loeken ; Felix Hüning
This article describes an Internet of things (IoT) sensing device with a wireless interface which is powered by the energy-harvesting method of the Wiegand effect. The Wiegand effect, in contrast to continuous sources like photovoltaic or thermal harvesters, provides small amounts of energy discontinuously in pulsed mode. To enable an energy-self-sufficient operation of the sensing device with this pulsed energy source, the output energy of the Wiegand generator is maximized. This energy is used to power up the system and to acquire and process data like position, temperature or other resistively measurable quantities as well as transmit these data via an ultra-low-power ultra-wideband (UWB) data transmitter. A proof-of-concept system was built to prove the feasibility of the approach. The energy consumption of the system during start-up was analysed, traced back in detail to the individual components, compared to the generated energy and processed to identify further optimization options. Based on the proof of concept, an application prototype was developed.
  • 1 to 6

OPUS4 Logo

  • Contact
  • Imprint
  • Datenschutzerklärung
  • Sitelinks