Refine
Document Type
- Article (8)
- Conference Proceeding (5)
- Book (3)
- Part of a Book (1)
Keywords
- Actuator disk modelling (1)
- Aeroelasticity (1)
- BET (1)
- Blade element method (1)
- CFD propeller simulation (1)
- Finite element method (1)
- Propeller (1)
- Propeller aerodynamics (1)
- Propeller elasticity (1)
- Propeller performance (1)
Inkompressible Strömungen
(2012)
Inkompressible Strömungen
(2015)
Operational Modal Analysis (OMA) is a promising candidate for flutter testing and Structural Health Monitoring (SHM) of aircraft wings that are passively excited by wind loads. However, no studies have been published where OMA is tested in transonic flows, which is the dominant condition for large civil aircraft and is characterized by complex and unique aerodynamic phenomena. We use data from the HIRENASD large-scale wind tunnel experiment to automatically extract modal parameters from an ambiently excited wing operated in the transonic regime using two OMA methods: Stochastic Subspace Identification (SSI) and Frequency Domain Decomposition (FDD). The system response is evaluated based on accelerometer measurements. The excitation is investigated from surface pressure measurements. The forcing function is shown to be non-white, non-stationary and contaminated by narrow-banded transonic disturbances. All these properties violate fundamental OMA assumptions about the forcing function. Despite this, all physical modes in the investigated frequency range were successfully identified, and in addition transonic pressure waves were identified as physical modes as well. The SSI method showed superior identification capabilities for the investigated case. The investigation shows that complex transonic flows can interfere with OMA. This can make existing approaches for modal tracking unsuitable for their application to aircraft wings operated in the transonic flight regime. Approaches to separate the true physical modes from the transonic disturbances are discussed.
Wind-induced operational variability is one of the major challenges for structural health monitoring of slender engineering structures like aircraft wings or wind turbine blades. Damage sensitive features often show an even bigger sensitivity to operational variability. In this study a composite cantilever was subjected to multiple mass configurations, velocities and angles of attack in a controlled wind tunnel environment. A small-scale impact damage was introduced to the specimen and the structural response measurements were repeated. The proposed damage detection methodology is based on automated operational modal analysis. A novel baseline preparation procedure is described that reduces the amount of user interaction to the provision of a single consistency threshold. The procedure starts with an indeterminate number of operational modal analysis identifications from a large number of datasets and returns a complete baseline matrix of natural frequencies and damping ratios that is suitable for subsequent anomaly detection. Mahalanobis distance-based anomaly detection is then applied to successfully detect the damage under varying severities of operational variability and with various degrees of knowledge about the present operational conditions. The damage detection capabilities of the proposed methodology were found to be excellent under varying velocities and angles of attack. Damage detection was less successful under joint mass and wind variability but could be significantly improved through the provision of the currently encountered operational conditions.
This work presents a methodology for automated
damage-sensitive feature extraction and anomaly
detection under multivariate operational variability
for in-flight assessment of wings. The
method uses a passive excitation approach, i. e.
without the need for artificial actuation. The
modal system properties (natural frequencies and
damping ratios) are used as damage-sensitive
features. Special emphasis is placed on the use
of Fiber Bragg Grating (FBG) sensing technology
and the consideration of Operational and
Environmental Variability (OEV). Measurements
from a wind tunnel investigation with a composite
cantilever equipped with FBG and piezoelectric
sensors are used to successfully detect an impact
damage. In addition, the feasibility of damage
localisation and severity estimation is evaluated
based on the coupling found between damageand
OEV-induced feature changes.