Refine
Year of publication
Document Type
- Article (63)
- Other (2)
- Conference Proceeding (1)
Keywords
- Heterostructure (1)
- Image Reconstruction (1)
- Metascintillator (1)
- Multiple TOF kernels (1)
- TOF PET (1)
Differential multiplicities of forward produced hadrons in deep inelastic muon scattering on nuclear targets have been compared with those from deuterium. The ratios are observed to increase towards unity as the virtual photon energy increases with no significant dependence on the other muon kinematic variables. The hadron transverse momentum distribution is observed to be broadened in nuclear targets. The dependence on the remaining hadron variables is investigated and the results are discussed in the framework of intranuclear interaction models and in the context of the EMC effect.
Measurements are presented of the inclusive distributions of the J/Ψ meson produced by muons of energy 200 GeV from an ammonia target. The gluon distribution of the nucleon has been derived from the data in the range 0.04<x<0.36 using a technique based on the colour singlet model. An arbitrary normalisation factor is required to obtain a reasonable integral of the gluon distribution. Some comments are made on the use of J/Ψ productionby virtual photons to extract the gluon distribution at HERA.
Results are presented on the ratios of the nucleon structure function in copper to deuterium from two separate experiments. The data confirm that the nucleon structure function,F 2, is different for bound nucleons than for the quasi-free ones in the deuteron. The redistribution in the fraction of the nucleon's momentum carried by quarks is investigated and it is found that the data are compatible with no integral loss of quark momenta due to nuclear effects.