### Refine

#### Keywords

- likelihood ratio test (2)
- Bahadur efficiency (1)
- Bootstrapping (1)
- Collective risk model (1)
- Coverage probability (1)
- Equivalence test (1)
- Gamma distribution (1)
- Goodness-of-fit test (1)
- Goodness-of-fit tests for uniformity (1)
- Hotelling’s T² test (1)
- Independence test (1)
- Integrated empirical distribution (survival) function (1)
- Kernel density estimator (1)
- Length of confidence intervals (1)
- Numerical inversion of Laplace transforms (1)
- Parametric bootstrap (1)
- Pitman efficiency (1)
- Vapnik–Čhervonenkis class (1)
- Volume of confidence regions (1)
- Wilcoxon tests (1)

On the basis of bivariate data, assumed to be observations of independent copies of a random vector (S,N), we consider testing the hypothesis that the distribution of (S,N) belongs to the parametric class of distributions that arise with the compound Poisson exponential model. Typically, this model is used in stochastic hydrology, with N as the number of raindays, and S as total rainfall amount during a certain time period, or in actuarial science, with N as the number of losses, and S as total loss expenditure during a certain time period. The compound Poisson exponential model is characterized in the way that a specific transform associated with the distribution of (S,N) satisfies a certain differential equation. Mimicking the function part of this equation by substituting the empirical counterparts of the transform we obtain an expression the weighted integral of the square of which is used as test statistic. We deal with two variants of the latter, one of which being invariant under scale transformations of the S-part by fixed positive constants. Critical values are obtained by using a parametric bootstrap procedure. The asymptotic behavior of the tests is discussed. A simulation study demonstrates the performance of the tests in the finite sample case. The procedure is applied to rainfall data and to an actuarial dataset. A multivariate extension is also discussed.

The paper deals with an asymptotic relative efficiency concept for confidence regions of multidimensional parameters that is based on the expected volumes of the confidence regions. Under standard conditions the asymptotic relative efficiencies of confidence regions are seen to be certain powers of the ratio of the limits of the expected volumes. These limits are explicitly derived for confidence regions associated with certain plugin estimators, likelihood ratio tests and Wald tests. Under regularity conditions, the asymptotic relative efficiency of each of these procedures with respect to each one of its competitors is equal to 1. The results are applied to multivariate normal distributions and multinomial distributions in a fairly general setting.

The paper deals with the asymptotic behaviour of estimators, statistical tests and confidence intervals for L²-distances to uniformity based on the empirical distribution function, the integrated empirical distribution function and the integrated empirical survival function. Approximations of power functions, confidence intervals for the L²-distances and statistical neighbourhood-of-uniformity validation tests are obtained as main applications. The finite sample behaviour of the procedures is illustrated by a simulation study.

The efficiency concepts of Bahadur and Pitman are used to compare the Wilcoxon tests in paired and independent survey samples. A comparison through the length of corresponding confidence intervals is also done. Simple conditions characterizing the dominance of a procedure are derived. Statistical tests for checking these conditions are suggested and discussed.

In a special paired sample case, Hotelling’s T² test based on the differences of the paired random vectors is the likelihood ratio test for testing the hypothesis that the paired random vectors have the same mean; with respect to a special group of affine linear transformations it is the uniformly most powerful invariant test for the general alternative of a difference in mean. We present an elementary straightforward proof of this result. The likelihood ratio test for testing the hypothesis that the covariance structure is of the assumed special form is derived and discussed. Applications to real data are given.

Hotelling’s T² tests in paired and independent survey samples are compared using the traditional asymptotic efficiency concepts of Hodges–Lehmann, Bahadur and Pitman, as well as through criteria based on the volumes of corresponding confidence regions. Conditions characterizing the superiority of a procedure are given in terms of population canonical correlation type coefficients. Statistical tests for checking these conditions are developed. Test statistics based on the eigenvalues of a symmetrized sample cross-covariance matrix are suggested, as well as test statistics based on sample canonical correlation type coefficients.

Let X₁,…,Xₙ be independent and identically distributed random variables with distribution F. Assuming that there are measurable functions f:R²→R and g:R²→R characterizing a family F of distributions on the Borel sets of R in the way that the random variables f(X₁,X₂),g(X₁,X₂) are independent, if and only if F∈F, we propose to treat the testing problem H:F∈F,K:F∉F by applying a consistent nonparametric independence test to the bivariate sample variables (f(Xᵢ,Xⱼ),g(Xᵢ,Xⱼ)),1⩽i,j⩽n,i≠j. A parametric bootstrap procedure needed to get critical values is shown to work. The consistency of the test is discussed. The power performance of the procedure is compared with that of the classical tests of Kolmogorov–Smirnov and Cramér–von Mises in the special cases where F is the family of gamma distributions or the family of inverse Gaussian distributions.