### Refine

#### Document Type

- Article (5)
- Part of a Book (1)
- Conference Proceeding (1)

#### Keywords

- Booster Station (1)
- Controller Parameter (1)
- Discrete Optimization (1)
- Level Control System (1)
- Optimal Closed Loop (1)
- Optimal Topology (1)
- Pump System (1)
- Technical Operation Research (1)
- Technical Operations Research (TOR) (1)
- availability (1)
- energy efficiency (1)
- energy transfer (1)
- heating system (1)
- mixed-integer linear programming (1)
- programming (1)
- sustainability (1)
- system optimization (1)
- system synthesis (1)
- technical operations research (1)

Pure analytical or experimental methods can only find a control strategy for technical systems with a fixed setup. In former contributions we presented an approach that simultaneously finds the optimal topology and the optimal open-loop control of a system via Mixed Integer Linear Programming (MILP). In order to extend this approach by a closed-loop control we present a Mixed Integer Program for a time discretized tank level control. This model is the basis for an extension by combinatorial decisions and thus for the variation of the network topology. Furthermore, one is able to appraise feasible solutions using the global optimality gap.

In times of planned obsolescence the demand for sustainability keeps growing. Ideally, a technical system is highly reliable, without failures and down times due to fast wear of single components. At the same time, maintenance should preferably be limited to pre-defined time intervals. Dispersion of load between multiple components can increase a system’s reliability and thus its availability inbetween maintenance points. However, this also results in higher investment costs and additional efforts due to higher complexity. Given a specific load profile and resulting wear of components, it is often unclear which system structure is the optimal one. Technical Operations Research (TOR) finds an optimal structure balancing availability and effort. We present our approach by designing a hydrostatic transmission system.

The conference center darmstadtium in Darmstadt is a prominent example of energy efficient buildings. Its heating system consists of different source and consumer circuits connected by a Zortström reservoir. Our goal was to reduce the energy costs of the system as much as possible. Therefore, we analyzed its supply circuits. The first step towards optimization is a complete examination of the system: 1) Compilation of an object list for the system, 2) collection of the characteristic curves of the components, and 3) measurement of the load profiles of the heat and volume-flow demand. Instead of modifying the system manually and testing the solution by simulation, the second step was the creation of a global optimization program. The objective was to minimize the total energy costs for one year. We compare two different topologies and show opportunities for significant savings.

Cheap does not imply cost-effective -- this is rule number one of zeitgeisty system design. The initial investment accounts only for a small portion of the lifecycle costs of a technical system. In fluid systems, about ninety percent of the total costs are caused by other factors like power consumption and maintenance. With modern optimization methods, it is already possible to plan an optimal technical system considering multiple objectives. In this paper, we focus on an often neglected contribution to the lifecycle costs: downtime costs due to spontaneous failures. Consequently, availability becomes an issue.

Planning the layout and operation of a technical system is a common task
for an engineer. Typically, the workflow is divided into consecutive stages: First,
the engineer designs the layout of the system, with the help of his experience or of
heuristic methods. Secondly, he finds a control strategy which is often optimized
by simulation. This usually results in a good operating of an unquestioned sys-
tem topology. In contrast, we apply Operations Research (OR) methods to find a
cost-optimal solution for both stages simultaneously via mixed integer program-
ming (MILP). Technical Operations Research (TOR) allows one to find a provable
global optimal solution within the model formulation. However, the modeling error
due to the abstraction of physical reality remains unknown. We address this ubiq-
uitous problem of OR methods by comparing our computational results with mea-
surements in a test rig. For a practical test case we compute a topology and control
strategy via MILP and verify that the objectives are met up to a deviation of 8.7%.

Booster stations can fulfill a varying pressure demand with high energy-efficiency, because individual pumps can be deactivated at smaller loads. Although this is a seemingly simple approach, it is not easy to decide precisely when to activate or deactivate pumps. Contemporary activation controls derive the switching points from the current volume flow through the system. However, it is not measured directly for various reasons. Instead, the controller estimates the flow based on other system properties. This causes further uncertainty for the switching decision. In this paper, we present a method to find a robust, yet energy-efficient activation strategy.

Verfügbarkeit und Nachhaltigkeit sind wichtige Anforderungen bei der Planung langlebiger technischer Systeme. Meist werden bei Lebensdaueroptimierungen lediglich einzelne Komponenten vordefinierter Systeme untersucht. Ob eine optimale Lebensdauer eine gänzlich andere Systemvariante bedingt, wird nur selten hinterfragt. Technical Operations Research (TOR) erlaubt es, aus Obermengen technischer Systeme automatisiert die lebensdaueroptimale Systemstruktur auszuwählen. Der Artikel zeigt dies am Beispiel eines hydrostatischen Getriebes.