Refine
Year of publication
Institute
Language
- English (19)
Document Type
- Conference Proceeding (16)
- Article (2)
- Other (1)
Keywords
This paper presents NLP Lean Programming
framework (NLPf), a new framework
for creating custom natural language processing
(NLP) models and pipelines by utilizing
common software development build systems.
This approach allows developers to train and
integrate domain-specific NLP pipelines into
their applications seamlessly. Additionally,
NLPf provides an annotation tool which improves
the annotation process significantly by
providing a well-designed GUI and sophisticated
way of using input devices. Due to
NLPf’s properties developers and domain experts
are able to build domain-specific NLP
applications more efficiently. NLPf is Opensource
software and available at https://
gitlab.com/schrieveslaach/NLPf.
Research collaborations provide opportunities for both practitioners and researchers: practitioners need solutions for difficult business challenges and researchers are looking for hard problems to solve and publish. Nevertheless, research collaborations carry the risk that practitioners focus on quick solutions too much and that researchers tackle theoretical problems, resulting in products which do not fulfill the project requirements.
In this paper we introduce an approach extending the ideas of agile and lean software development. It helps practitioners and researchers keep track of their common research collaboration goal: a scientifically enriched software product which fulfills the needs of the practitioner’s business model.
This approach gives first-class status to application-oriented metrics that measure progress and success of a research collaboration continuously. Those metrics are derived from the collaboration requirements and help to focus on a commonly defined goal.
An appropriate tool set evaluates and visualizes those metrics with minimal effort, and all participants will be pushed to focus on their tasks with appropriate effort. Thus project status, challenges and progress are transparent to all research collaboration members at any time.
Software Stories Guide
(2017)
Messenger apps like WhatsApp or Telegram are an integral part of daily communication. Besides the various positive effects, those services extend the operating range of criminals. Open trading groups with many thousand participants emerged on Telegram. Law enforcement agencies monitor suspicious users in such chat rooms. This research shows that text analysis, based on natural language processing, facilitates this through a meaningful domain overview and detailed investigations. We crawled a corpus from such self-proclaimed black markets and annotated five attribute types products, money, payment methods, user names, and locations. Based on each message a user sends, we extract and group these attributes to build profiles. Then, we build features to cluster the profiles. Pretrained word vectors yield better unsupervised clustering results than current
state-of-the-art transformer models. The result is a semantically meaningful high-level overview of the user landscape of black market chatrooms. Additionally, the extracted structured information serves as a foundation for further data exploration, for example, the most active users or preferred payment methods.
The integration of product data from heterogeneous sources and manufacturers into a single catalog is often still a laborious, manual task. Especially small- and medium-sized enterprises face the challenge of timely integrating the data their business relies on to have an up-to-date product catalog, due to format specifications, low quality of data and the requirement of expert knowledge. Additionally, modern approaches to simplify catalog integration demand experience in machine learning, word vectorization, or semantic similarity that such enterprises do not have. Furthermore, most approaches struggle with low-quality data. We propose Attribute Label Ranking (ALR), an easy to understand and simple to adapt learning approach. ALR leverages a model trained on real-world integration data to identify the best possible schema mapping of previously unknown, proprietary, tabular format into a standardized catalog schema. Our approach predicts multiple labels for every attribute of an inpu t column. The whole column is taken into consideration to rank among these labels. We evaluate ALR regarding the correctness of predictions and compare the results on real-world data to state-of-the-art approaches. Additionally, we report findings during experiments and limitations of our approach.
Multi-attribute relation extraction (MARE): simplifying the application of relation extraction
(2021)
Natural language understanding’s relation extraction makes innovative and encouraging novel business concepts possible and facilitates new digitilized decision-making processes. Current approaches allow the extraction of relations with a fixed number of entities as attributes. Extracting relations with an arbitrary amount of attributes requires complex systems and costly relation-trigger annotations to assist these systems. We introduce multi-attribute relation extraction (MARE) as an assumption-less problem formulation with two approaches, facilitating an explicit mapping from business use cases to the data annotations. Avoiding elaborated annotation constraints simplifies the application of relation extraction approaches. The evaluation compares our models to current state-of-the-art event extraction and binary relation extraction methods. Our approaches show improvement compared to these on the extraction of general multi-attribute relations.