Refine
Institute
Has Fulltext
- no (4)
Language
- English (4)
Document Type
- Article (3)
- Conference Proceeding (1)
Keywords
- Bacillus atrophaeus (1)
- aseptic filling (1)
- biosensors (1)
- endospores (1)
- gaseous sterilization processes (1)
- hydrogen peroxide (1)
- immobilization (1)
- interdigitated electrodes (1)
- microbiological spores (1)
- organosilanes (1)
Is part of the Bibliography
- no (4)
Optimization of the immobilization of bacterial spores on glass substrates with organosilanes
(2016)
Spores can be immobilized on biosensors to function as sensitive recognition elements. However, the immobilization can affect the sensitivity and reproducibility of the sensor signal. In this work, three different immobilization strategies with organosilanes were optimized and characterized to immobilize Bacillus atrophaeus spores on glass substrates. Five different silanization parameters were investigated: nature of the solvent, concentration of the silane, silanization time, curing process, and silanization temperature. The resulting silane layers were resistant to a buffer solution (e.g., Ringer solution) with a polysorbate (e.g., Tween®80) and sonication.
Sterilization of packages prior to product filling is a key step in aseptic filling machines. Chemical sterilization is one of the main conventional techniques in many packaging industries. To monitor the effect of sterilization on test microorganisms (Bacillus atrophaeus spores), an impedimetric sensor approach was developed based on a planar interdigitated electrode (IDE) design. In this work, sensor measurements were conducted to prove sensor functionality at different hydrogen peroxide concentrations.
In this work, a spore-based biosensor is evaluated to monitor the microbicidal efficacy of sterilization processes applying gaseous hydrogen peroxide (H2O2). The sensor is based on interdigitated electrode structures (IDEs) that have been fabricated by means of thin-film technologies. Impedimetric measurements are applied to study the effect of sterilization process on spores of Bacillus atrophaeus. This resilient microorganism is commonly used in industry to proof the sterilization efficiency. The sensor measurements are accompanied by conventional microbiological challenge tests, as well as morphological characterizations with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The sensor measurements are correlated with the microbiological test routines. In both methods, namely the sensor-based and microbiological one, a tailing effect has been observed. The results are evaluated and discussed in a three-dimensional calibration plot demonstrating the sensor's suitability to enable a rapid process decision in terms of a successfully performed sterilization.
Sterilisation processes are compulsory in medicine, pharmacy, and food industries to prevent infections of consumers and microbiological contaminations of products. Monitoring the sterilisation by conventional microbiological methods is time- and lab-consuming. To overcome this problem, in this work a novel biosensor has been proposed. The sensor enables a fast method to evaluate sterilisation processes. By means of thin-film technology the sensor's transducer structures in form of IDEs (interdigitated electrodes) have been fabricated on a silicon substrate. Physical characterisation of the developed sensor was done by AFM, SEM, and profilometry. Impedance analyses were conducted for the electrical characterisation. As microbiological layer spores of B. atrophaeus have been immobilised on the sensing structure; spores of this type are a well-known sterilisation test organism. Impedance measurements at a fixed frequency over time were performed to monitor the immobilisation process. A sterilisation process according to aseptic filling machines was applied to demonstrate the sensor functionality. After both, immobilisation and sterilisation, a change in impedance could successfully be detected.