Refine
Year of publication
Institute
Language
- English (77)
- Multiple languages (2)
- German (1)
- Russian (1)
Document Type
- Article (60)
- Conference Proceeding (13)
- Part of a Book (4)
- Doctoral Thesis (2)
- Book (1)
- Report (1)
Keywords
- Clusterion (4)
- Lipopolysaccharide (4)
- Air purification (3)
- CellDrum (3)
- Kohlenstofffaser (3)
- Luftreiniger (3)
- Plasmacluster ion technology (3)
- Raumluft (3)
- lipopolysaccharides (3)
- Fibroblast (2)
The carbonized rice husk (CRH) was evaluated for its wound healing activity in rats using excision models. In this study, the influences of CRH on wound healing in rat skin in vivo and cellular behavior of human dermal fibroblasts in vitro were investigated. The obtained results showed that the CRH treatment promoted wound epithelization in rats and exhibited moderate inhibition of cell proliferation in vitro. CRH with lanolin oil treated wounds were found to epithelize faster as compared to controls.
Tests with palm tree leaves have just started yet and scan data are in the process to be analyzed. The final goal of future project for palm tree gender and species recognition will be to develop optical scanning technology to be applied to date palm tree leaves for in–situ screening purposes. Depending on the software used and the particular requirements of the users the technology potentially shall be able to identify palm tree diseases, palm tree gender, and species of young date palm trees by scanning leaves.
Autonomous robotic systems for penetrating thick ice shells with simultaneous collecting of scientific data are very promising devices in both terrestrial (glacier, climate research) and extra-terrestrial applications. Technical challenges in development of such systems are numerous and include 3D-navigation, an appropriate energy source, motion control, etc. Not less important is the problem of forward contamination of the pristine glacial environments with microorganisms and biomolecules from the surface of the probe. This study was devoted to establishing a laboratory model for microbial contamination of a newly constructed ice-melting probe called IceMole and to analyse the viability and amount of the contaminating microorganisms as a function of distance. The used bacterial strains were Bacillus subtilis (ATCC 6051) and Escherichia coli (ATCC 11775). The main objective was development of an efficient and reliable in-situ decontamination method of the melting probe. Therefore, several chemical substances were tested in respect of their efficacy to eliminate bacteria on the surface of the melting probe at low temperature (0 - 5 °C) and at continuous dilution by melted water. Our study has shown that at least 99.9% decontamination of the IceMole can be successfully achieved by the injection of 30% (v/v) hydrogen peroxide and 3% (v/v) sodium hypochlorite into the drilling site. We were able to reproduce this result in both time-dependent and depth-dependent experiments. The sufficient amount of 30% (v/v) H₂O₂ or 3% (v/v) NaClO has been found to be approximately 18 L per cm² of the probe’s surface.
Background
Minor changes in protein structure induced by small organic and inorganic molecules can result in significant metabolic effects. The effects can be even more profound if the molecular players are chemically active and present in the cell in considerable amounts. The aim of our study was to investigate effects of a nitric oxide donor (spermine NONOate), ATP and sodium/potassium environment on the dynamics of thermal unfolding of human hemoglobin (Hb). The effect of these molecules was examined by means of circular dichroism spectrometry (CD) in the temperature range between 25°C and 70°C. The alpha-helical content of buffered hemoglobin samples (0.1 mg/ml) was estimated via ellipticity change measurements at a heating rate of 1°C/min.
Results
Major results were:
1) spermine NONOate persistently decreased the hemoglobin unfolding temperature T u irrespectively of the Na + /K + environment,
2) ATP instead increased the unfolding temperature by 3°C in both sodium-based and potassium-based buffers and
3) mutual effects of ATP and NO were strongly influenced by particular buffer ionic compositions. Moreover, the presence of potassium facilitated a partial unfolding of alpha-helical structures even at room temperature.
Conclusion
The obtained data might shed more light on molecular mechanisms and biophysics involved in the regulation of protein activity by small solutes in the cell.