Refine
Institute
Document Type
- Article (7)
- Book (3)
- Conference Proceeding (3)
Keywords
- Elektronik (1)
- Elektrotechnik (1)
- Energy system (1)
- Mixed integer linear programming (MILP) (1)
- Renewable energy (1)
- Time-series aggregation (1)
- Typical periods (1)
Using optimization to design a renewable energy system has become a computationally demanding task as the high temporal fluctuations of demand and supply arise within the considered time series. The aggregation of typical operation periods has become a popular method to reduce effort. These operation periods are modelled independently and cannot interact in most cases. Consequently, seasonal storage is not reproducible. This inability can lead to a significant error, especially for energy systems with a high share of fluctuating renewable energy. The previous paper, “Time series aggregation for energy system design: Modeling seasonal storage”, has developed a seasonal storage model to address this issue. Simultaneously, the paper “Optimal design of multi-energy systems with seasonal storage” has developed a different approach. This paper aims to review these models and extend the first model. The extension is a mathematical reformulation to decrease the number of variables and constraints. Furthermore, it aims to reduce the calculation time while achieving the same results.
Wenn durch innovative, automatisierte Güterwagen betriebswirtschaftliche Vorteile nutzbar gemacht werden sollen, muss die Migration auf das neue System in sinnvollen Teilschritten unter Berücksichtigung der organisationellen und betrieblichen Vereinbarkeit vorgenommen werden. Eine stufenweise Migration mit Nachrüstbarkeit und Kompatibilität kann die optimale Ausstattungsvariante für die unterschiedlichen Betriebsszenarien sowie eine Steigerung der Wirtschaftlichkeit des Gesamtsystems bieten.
Berücksichtigung von No Fault Found im Diagnose- und Instandhaltungssystem von Schienenfahrzeugen
(2020)
Intermittierende und nicht reproduzierbare Fehler, auch als No Fault Found bezeichnet, treten in praktisch allen Bereichen auf und sorgen für hohe Kosten. Diese sind häufig auf unpräzise Fehlerbeschreibungen zurückzuführen. Im vorliegenden Beitrag werden Anpassungen der Vorgehensweise bei der Entwicklung und Anpassungen des Diagnosesystems vorgeschlagen.
Neue Perspektiven für die Bahn in der Produktions- und Distributionslogistik durch Prozessautomation
(2019)
Deutschland braucht mehr Eisenbahn um CO2-Emissionen aus dem Verkehr zu reduzieren. Sie muss zum Rückgrat aktueller Logistikprozesse, z.B. bei Kaufmannsgütern und E-Commerce, werden. Dies geht nicht ohne neuartige betriebliche Konzepte und eine Transformation des Güterwagens von einem „dummen Stück Stahl“ zu einem modernen Werkzeug der Logistik.
Als „Güterwagen 4.0“ wird ein kommunikativer und kooperativer Güterwagen verstanden, der die Voraussetzung zur Automatisierung aller Prozesse der Zugvorbereitung bereitstellt, sich aber ansonsten vollkommen kompatibel mit heutigen Betriebsverfahren im Hauptlauf präsentiert. Durch Kommunikation zwischen Güterwagen und umgebenden intelligenten Systemen im Sinne eines „Internet der Dinge“ gelingt damit unter Anderem die Realisierung hoch effizienter Gleisanschlussverkehre, die der Güterbahn neue Märkte abseits der klassisch bahn-affinen Verkehre erschließen und letztlich den Wandel zu einer nachhaltigen Gütermobilität fördern.