Refine
Institute
Has Fulltext
- no (5)
Document Type
- Conference Proceeding (3)
- Article (2)
Keywords
- Assistive robot (1)
- Human–human interaction (1)
- Human–robot cooperation (1)
- Joint handling (1)
- Kinematics (1)
- Spatio-temporal parameters (1)
Zugriffsart
- weltweit (3)
Integrative biomechanics of a human–robot carrying task : implications for future collaborative work
(2025)
Patients with sarcopenia, who face difficulties in carrying heavy loads, may benefit from collaborative robotic assistance that is modeled after human–human interaction. The objective of this study is to describe the kinematics and spatio-temporal parameters during a collaborative carrying task involving both human and robotic partners. Fourteen subjects carried a table while moving forward with a human and a robotic partner. The movements were recorded using a three-dimensional motion capture system. The subjects successfully completed the task of carrying the table with the robot. No significant differences were found in the shoulder and elbow flexion/extension angles. In human–human dyads, the center of mass naturally oscillated vertically with an amplitude of approximately 2 cm. The here presented results of the human–human interaction serve as a model for the development of future robotic systems, designed for collaborative manipulation.
Risk management for structures with a risk of explosion should be considered very carefully when performing a risk analysis according to IEC 62305-2. In contrast to the 2006 edition of the standard, the 2010 edition describes the topic “Structures with a risk of explosion” in more detail. Moreover, in Germany separate procedures and parameters are defined for the risk analysis of structures with a risk of explosion (Supplement 3 of the German DIN EN 62305-2 standard). This paper describes the contents and the relevant calculations of this Supplement 3, together with a numerical example.