Refine
Institute
Has Fulltext
- no (2)
Language
- English (2)
Document Type
- Article (1)
- Conference Proceeding (1)
Keywords
Zugriffsart
- weltweit (2)
Is part of the Bibliography
- no (2)
This paper introduces three novel approaches to size geothermal energy piles in a MILP, offering fresh perspectives and potential solutions. The research overlooks MILP models that incorporate the sizing of a geothermal borefield. Therefore, this paper presents a new model utilizing a g-function model to regulate the power limits. Geothermal energy is an essential renewable source, particularly for heating and cooling. Complex energy systems, with their diverse sources of heating and cooling and intricate interactions, are crucial for a climate-neutral energy system. This work significantly contributes to the integration of geothermal energy as a vital energy source into the modelling of such complex systems. Borehole heat exchangers help generate heat in low-temperature energy systems. However, optimizing these exchangers using mixed-integer-linear programming (MILP), which only allows for linear equations, is complex. The current research only uses R-C, reservoir, or g-function models for pre-sized borefields. As a result, borehole heat exchangers are often represented by linear factors such as 50 W/m for extraction or injection limits. A breakthrough in the accuracy of borehole heat exchanger sizing has been achieved with the development of a new model, which has been rigorously compared to two simpler models. The geothermal system was configured for three energy systems with varying ground and bore field parameters. The results were then compared with existing geothermal system tools. The new model provides more accurate depth sizing with an error of less than 5 % compared to simpler models with an error higher than 50 %, although it requires more calculation time. The new model can lead to more accurate borefield sizing in MILP applications to optimize energy systems. This new model is especially beneficial for large-scale projects that are highly dependent on borefield size.
Using optimization to design a renewable energy system has become a computationally demanding task as the high temporal fluctuations of demand and supply arise within the considered time series. The aggregation of typical operation periods has become a popular method to reduce effort. These operation periods are modelled independently and cannot interact in most cases. Consequently, seasonal storage is not reproducible. This inability can lead to a significant error, especially for energy systems with a high share of fluctuating renewable energy. The previous paper, “Time series aggregation for energy system design: Modeling seasonal storage”, has developed a seasonal storage model to address this issue. Simultaneously, the paper “Optimal design of multi-energy systems with seasonal storage” has developed a different approach. This paper aims to review these models and extend the first model. The extension is a mathematical reformulation to decrease the number of variables and constraints. Furthermore, it aims to reduce the calculation time while achieving the same results.