Refine
Year of publication
Institute
Document Type
- Conference Proceeding (52)
- Article (32)
- Part of a Book (3)
- Book (2)
- Doctoral Thesis (1)
- Habilitation (1)
Keywords
- Architektur (2)
- Deutschland (2)
- Wasserbau (2)
- Wasserwirtschaft (2)
- CFD (1)
- Hazard assessment (1)
- Hydraulic structures (1)
- Labyrinth weirs (1)
- Landslide tsunamis (1)
- Large Eddy Simulation (1)
Air–water flows
(2024)
High Froude-number open-channel flows can entrain significant volumes of air, a phenomenon that occurs continuously in spillways, in free-falling jets and in hydraulic jumps, or as localized events, notably at the toe of hydraulic jumps or in plunging jets. Within these flows, turbulence generates millions of bubbles and droplets as well as highly distorted wavy air–water interfaces. This phenomenon is crucial from a design perspective, as it influences the behaviour of high-velocity flows, potentially impairing the safety of dam operations. This review examines recent scientific and engineering progress, highlighting foundational studies and emerging developments. Notable advances have been achieved in the past decades through improved sampling of flows and the development of physics-based models. Current challenges are also identified for instrumentation, numerical modelling and (up)scaling that hinder the formulation of fundamental theories, which are instrumental for improving predictive models, able to offer robust support for the design of large hydraulic structures at prototype scale.
Accurate determination of free-surface dynamics has attracted much research attention during the past decade and has important applications in many environmental and water related areas. In this study, the free-surface dynamics in several turbulent flows commonly found in nature were investigated using a synchronised setup consisting of an ultrasonic sensor and a high-speed video camera. Basic sensor capabilities were examined in dry conditions to allow for a better characterisation of the present sensor model. The ultrasonic sensor was found to adequately reproduce free-surface dynamics up to the second order, especially in two-dimensional scenarios with the most energetic modes in the low frequency range. The sensor frequency response was satisfactory in the sub-20 Hz band, and its signal quality may be further improved by low-pass filtering prior to digitisation. The application of the USS to characterise entrapped air in high-velocity flows is also discussed.
Vectrino profiler spatial filtering for shear flows based on the mean velocity gradient equation
(2018)
A new methodology is proposed to spatially filter acoustic Doppler velocimetry data from a Vectrino profiler based on the differential mean velocity equation. Lower and upper bounds are formulated in terms of physically based flow constraints. Practical implementation is discussed, and its application is tested against data gathered from an open-channel flow over a stepped macroroughness surface. The method has proven to detect outliers occurring all over the distance range sampled by the Vectrino profiler and has shown to remain applicable out of the region of validity of the velocity gradient equation. Finally, a statistical analysis suggests that physically obtained bounds are asymptotically representative.
New information regarding the influence of a stepped chute on the hydraulic performance of the United States Bureau of Reclamation (Reclamation) Type III hydraulic jump stilling basin is presented for design (steady) and adverse (decreasing tailwater) conditions. Using published experimental data and computational fluid dynamics (CFD) models, this paper presents a detailed comparison between smooth-chute and stepped-chute configurations for chute slopes of 0.8H:1V and 4H:1V and Froude numbers (F) ranging from 3.1 to 9.5 for a Type III basin designed for F = 8. For both stepped and smooth chutes, the relative role of each basin element was quantified, up to the most hydraulic extreme case of jump sweep-out. It was found that, relative to a smooth chute, the turbulence generated by a stepped chute causes a higher maximum velocity decay within the stilling basin, which represents an enhancement of the Type III basin’s performance but also a change in the relative role of the basin elements. Results provide insight into the ability of the CFD models [unsteady Reynolds-averaged Navier-Stokes (RANS) equations with renormalization group (RNG) k-ϵ turbulence model and volume-of-fluid (VOF) for free surface tracking] to predict the transient basin flow structure and velocity profiles. Type III basins can perform adequately with a stepped chute despite the effects steps have on the relative role of each basin element. It is concluded that the classic Type III basin design, based upon methodology by reclamation specific to smooth chutes, can be hydraulically improved for the case of stepped chutes for design and adverse flow conditions using the information presented herein.
Sensitivity of turbulent Schmidt number and turbulence model to simulations of jets in crossflow
(2016)
Environmental discharges have been traditionally designed by means of cost-intensive and time-consuming experimental studies. Some extensively validated models based on an integral approach have been often employed for water quality problems, as recommended by USEPA (i.e.: CORMIX). In this study, FLOW-3D is employed for a full 3D RANS modelling of two turbulent jet-to-crossflow cases, including free surface jet impingement. Results are compared to both physical modelling and CORMIX to better assess model performance. Turbulence measurements have been collected for a better understanding of turbulent diffusion's parameter sensitivity. Although both studied models are generally able to reproduce jet trajectory, jet separation downstream of the impingement has been reproduced only by RANS modelling. Additionally, concentrations are better reproduced by FLOW-3D when the proper turbulent Schmidt number is used. This study provides a recommendation on the selection of the turbulence model and the turbulent Schmidt number for future outfall structures design studies.
Self-aeration is traditionally explained by the water turbulent boundary layer outer edge intersection with the free surface. This paper presents a discussion on the commonly accepted hypothesis behind the computation of the critical point of self-aeration in spillway flows and a new formulation is proposed based on the existence of a developing air flow over the free surface. Upstream of the inception point of self-aeration, some surface roughening has been often reported in previous studies which consequently implies some entrapped air transport and air–water flows coupling. Such air flow is proven in this study by presenting measured air velocities and computing the air boundary layer thickness for a 1V:2H smooth chute flow. Additionally, the growth rate of free surface waves has been analysed by means of Ultrasonic Sensors measurements, obtaining also the entrapped air concentration. High-speed camera imaging has been used for qualitative study of the flow perturbations.
A new formulation for the prediction of free surface dynamics related to the turbulence occurring nearby is proposed. This formulation, altogether with a breakup criterion, can be used to compute the inception of self-aeration in high velocity flows like those occurring in hydraulic structures. Assuming a simple perturbation geometry, a kinematic and a non-linear momentum-based dynamic equation are formulated and forces acting on a control volume are approximated. Limiting steepness is proposed as an adequate breakup criterion. Role of the velocity fluctuations normal to the free surface is shown to be the main turbulence quantity related to self-aeration and the role of the scales contained in the turbulence spectrum are depicted. Surface tension force is integrated accounting for large displacements by using differential geometry for the curvature estimation. Gravity and pressure effects are also contemplated in the proposed formulation. The obtained equations can be numerically integrated for each wavelength, hence resulting in different growth rates and allowing computation of the free surface roughness wavelength distribution. Application to a prototype scale spillway (at the Aviemore dam) revealed that most unstable wavelength was close to the Taylor lengthscale. Amplitude distributions have been also obtained observing different scaling for perturbations stabilized by gravity or surface tension. The proposed theoretical framework represents a new conceptualization of self-aeration which explains the characteristic rough surface at the non-aerated region as well as other previous experimental observations which remained unresolved for several decades.