Refine
Year of publication
Institute
Has Fulltext
- no (15)
Document Type
- Conference Proceeding (9)
- Article (4)
- Part of a Book (1)
- Doctoral Thesis (1)
Keywords
- CO2 (2)
- 3D object detection (1)
- Anomaly detection (1)
- Building Automation (1)
- Business understanding (1)
- CCD-Bildwandler (1)
- Carbon Dioxide (1)
- Datasets (1)
- Deep learning (1)
- Dreidimensionale Bildverarbeitung (1)
In this paper we investigate the use of deep neural networks for 3D object detection in uncommon, unstructured environments such as in an open-pit mine. While neural nets are frequently used for object detection in regular autonomous driving applications, more unusual driving scenarios aside street traffic pose additional challenges. For one, the collection of appropriate data sets to train the networks is an issue. For another, testing the performance of trained networks often requires tailored integration with the particular domain as well. While there exist different solutions for these problems in regular autonomous driving, there are only very few approaches that work for special domains just as well. We address both the challenges above in this work. First, we discuss two possible ways of acquiring data for training and evaluation. That is, we evaluate a semi-automated annotation of recorded LIDAR data and we examine synthetic data generation. Using these datasets we train and test different deep neural network for the task of object detection. Second, we propose a possible integration of a ROS2 detector module for an autonomous driving platform. Finally, we present the performance of three state-of-the-art deep neural networks in the domain of 3D object detection on a synthetic dataset and a smaller one containing a characteristic object from an open-pit mine.
Aim of the AXON2 project (Adaptive Expert System for Object Recogniton using Neuml Networks) is the development of an object recognition system (ORS) capable of recognizing isolated 3d objects from arbitrary views. Commonly, classification is based on a single feature extracted from the original image. Here we present an architecture adapted from the Mixtures of Eaqerts algorithm which uses multiple neuml networks to integmte different features. During tmining each neural network specializes in a subset of objects or object views appropriate to the properties of the corresponding feature space. In recognition mode the system dynamically chooses the most relevant features and combines them with maximum eficiency. The remaining less relevant features arz not computed and do therefore not decelerate the-recognition process. Thus, the algorithm is well suited for ml-time applications.
This paper describes the realization of a novel neurocomputer which is based on the concepts of a coprocessor. In contrast to existing neurocomputers the main interest was the realization of a scalable, flexible system, which is capable of computing neural networks of arbitrary topology and scale, with full independence of special hardware from the software's point of view. On the other hand, computational power should be added, whenever needed and flexibly adapted to the requirements of the application. Hardware independence is achieved by a run time system which is capable of using all available computing power, including multiple host CPUs and an arbitrary number of neural coprocessors autonomously. The realization of arbitrary neural topologies is provided through the implementation of the elementary operations which can be found in most neural topologies.
This paper addresses the pixel based classification of three dimensional objects from arbitrary views. To perform this task a coding strategy, inspired by the biological model of human vision, for pixel data is described. The coding strategy ensures that the input data is invariant against shift, scale and rotation of the object in the input domain. The image data is used as input to a class of self organizing neural networks, the Kohonen-maps or self-organizing feature maps (SOFM). To verify this approach two test sets have been generated: the first set, consisting of artificially generated images, is used to examine the classification properties of the SOFMs; the second test set examines the clustering capabilities of the SOFM when real world image data is applied to the network after it has been preprocessed to be invariant against shift, scale and rotation. It is shown that the clustering capability of the SOFM is strongly dependant on the invariance coding of the images.
This paper addresses the pixel based recognition of 3D objects with bidirectional associative memories. Computational power and memory requirements for this approach are identified and compared to the performance of current computer architectures by benchmarking different processors. It is shown, that the performance of special purpose hardware, like neurocomputers, is between one and two orders of magnitude higher than the performance of mainstream hardware. On the other hand, the calculation of small neural networks is performed more efficiently on mainstream processors. Based on these results a novel concept is developed, which is tailored for the efficient calculation of bidirectional associative memories. The computational efficiency is further enhanced by the application of algorithms and storage techniques which are matched to characteristics of the application at hand.
In der Vergangenheit basierten große Systemintegrationsprojekte in der Regel auf Individualentwicklungen für einzelne Kunden. Getrieben durch Kostendruck steigt aber der Bedarf nach standardisierten Lösungen, die gleichzeitig die individuellen Anforderungen des jeweiligen Umfelds berücksichtigen. T-Systems GEI GmbH wird beiden Anforderungen mit Produktkerneln gerecht. Neben den technischen Aspekten der Kernelentwicklung spielen besonders organisatorische Aspekte eine Rolle, um Kernel effizient und qualitativ hochwertig zu entwickeln, ohne deren Funktionalitäten ins Uferlose wachsen zu lassen. Umgesetzt hat T-Systems dieses Konzept für Flughafeninformationssysteme. Damit kann dem wachsenden Bedarf der Flughafenbetreiber nach einer effizienten und kostengünstigen Softwarelösung zur Unterstützung Ihrer Geschäftsprozesse entsprochen werden.
In this paper we report on CO2 Meter, a do-it-yourself carbon dioxide measuring device for the classroom. Part of the current measures for dealing with the SARS-CoV-2 pandemic is proper ventilation in indoor settings. This is especially important in schools with students coming back to the classroom even with high incidents rates. Static ventilation patterns do not consider the individual situation for a particular class. Influencing factors like the type of activity, the physical structure or the room occupancy are not incorporated. Also, existing devices are rather expensive and often provide only limited information and only locally without any networking. This leaves the potential of analysing the situation across different settings untapped. Carbon dioxide level can be used as an indicator of air quality, in general, and of aerosol load in particular. Since, according to the latest findings, SARS-CoV-2 can be transmitted primarily in the form of aerosols, carbon dioxide may be used as a proxy for the risk of a virus infection. Hence, schools could improve the indoor air quality and potentially reduce the infection risk if they actually had measuring devices available in the classroom. Our device supports schools in ventilation and it allows for collecting data over the Internet to enable a detailed data analysis and model generation. First deployments in schools at different levels were received very positively. A pilot installation with a larger data collection and analysis is underway.