Refine
Year of publication
Institute
Has Fulltext
- no (16)
Document Type
- Conference Proceeding (9)
- Article (5)
- Part of a Book (1)
- Doctoral Thesis (1)
Keywords
- CO2 (2)
- 3D object detection (1)
- Anomaly detection (1)
- Building Automation (1)
- Business understanding (1)
- CCD-Bildwandler (1)
- CO (1)
- Carbon Dioxide (1)
- Datasets (1)
- Deep learning (1)
To successfully develop and introduce concrete artificial intelligence (AI) solutions in operational practice, a comprehensive process model is being tested in the WIRKsam joint project. It is based on a methodical approach that integrates human, technical and organisational aspects and involves employees in the process. The chapter focuses on the procedure for identifying requirements for a work system that is implementing AI in problem-driven projects and for selecting appropriate AI methods. This means that the use case has already been narrowed down at the beginning of the project and must be completely defined in the following. Initially, the existing preliminary work is presented. Based on this, an overview of all procedural steps and methods is given. All methods are presented in detail and good practice approaches are shown. Finally, a reflection of the developed procedure based on the application in nine companies is given.
In this field study we present an approach for the comprehensive and room-specific assessment of
parameters with the overall aim to realize energy-efficient provision of hygienically harmless and
thermally comfortable indoor environmental quality in naturally ventilated non-residential
buildings. The approach is based on (i) conformity assessment of room design parameters, (ii)
empirical determination of theoretically expected occupant-specific supply air flow rates and
corresponding air exchange rates, (iii) experimental determination of real occupant-specific
supply air flow rates and corresponding air exchange rates, (iv) measurement of indoor environmental
exposure conditions of T, RH, cCO2 , cPM2.5 and cTVOC, and (v) determination of real
energy demands for the prevailing ventilation scheme. Underlying assessment criteria comprise
the indoor environmental parameters of category II of EN 16798-1: Temperature T = 20 ◦C–24 ◦C,
and relative humidity RH = 25 %–60 % as well as the guide values of the German Federal
Environment Agency for cCO2 cPM2.5 and cTVOC of 1000 ppm, 15 μg m⁻³, and 1 mg m ⁻³,
respectively.
Investigation objects are six naturally ventilated classrooms of a German secondary school.
Major factors influencing indoor environmental quality in these classrooms are the specific room
volume per occupant and the window opening area. It is concluded that the rigorous implementation
of ventilation recommendations laid down by the German Federal Environment
Agency is ineffective with respect to anticipated indoor environmental parameters and inefficient
with respect to ventilation energy losses on the order of about 10 kWh m⁻² a ⁻¹ to 30 kWh m⁻²
a ⁻¹.
Aim of the AXON2 project (Adaptive Expert System for Object Recogniton using Neuml Networks) is the development of an object recognition system (ORS) capable of recognizing isolated 3d objects from arbitrary views. Commonly, classification is based on a single feature extracted from the original image. Here we present an architecture adapted from the Mixtures of Eaqerts algorithm which uses multiple neuml networks to integmte different features. During tmining each neural network specializes in a subset of objects or object views appropriate to the properties of the corresponding feature space. In recognition mode the system dynamically chooses the most relevant features and combines them with maximum eficiency. The remaining less relevant features arz not computed and do therefore not decelerate the-recognition process. Thus, the algorithm is well suited for ml-time applications.
This paper describes the realization of a novel neurocomputer which is based on the concepts of a coprocessor. In contrast to existing neurocomputers the main interest was the realization of a scalable, flexible system, which is capable of computing neural networks of arbitrary topology and scale, with full independence of special hardware from the software's point of view. On the other hand, computational power should be added, whenever needed and flexibly adapted to the requirements of the application. Hardware independence is achieved by a run time system which is capable of using all available computing power, including multiple host CPUs and an arbitrary number of neural coprocessors autonomously. The realization of arbitrary neural topologies is provided through the implementation of the elementary operations which can be found in most neural topologies.
This paper addresses the pixel based classification of three dimensional objects from arbitrary views. To perform this task a coding strategy, inspired by the biological model of human vision, for pixel data is described. The coding strategy ensures that the input data is invariant against shift, scale and rotation of the object in the input domain. The image data is used as input to a class of self organizing neural networks, the Kohonen-maps or self-organizing feature maps (SOFM). To verify this approach two test sets have been generated: the first set, consisting of artificially generated images, is used to examine the classification properties of the SOFMs; the second test set examines the clustering capabilities of the SOFM when real world image data is applied to the network after it has been preprocessed to be invariant against shift, scale and rotation. It is shown that the clustering capability of the SOFM is strongly dependant on the invariance coding of the images.
This paper addresses the pixel based recognition of 3D objects with bidirectional associative memories. Computational power and memory requirements for this approach are identified and compared to the performance of current computer architectures by benchmarking different processors. It is shown, that the performance of special purpose hardware, like neurocomputers, is between one and two orders of magnitude higher than the performance of mainstream hardware. On the other hand, the calculation of small neural networks is performed more efficiently on mainstream processors. Based on these results a novel concept is developed, which is tailored for the efficient calculation of bidirectional associative memories. The computational efficiency is further enhanced by the application of algorithms and storage techniques which are matched to characteristics of the application at hand.
Existing residential buildings have an average lifetime of 100 years. Many of these buildings will exist for at least another 50 years. To increase the efficiency of these buildings while keeping costs at reasonable rates, they can be retrofitted with sensors that deliver information to central control units for heating, ventilation and electricity. This retrofitting process should happen with minimal intervention into existing infrastructure and requires new approaches for sensor design and data transmission. At FH Aachen University of Applied Sciences, students of different disciplines work together to learn how to design, build, deploy and operate such sensors. The presented teaching project already created a low power design for a combined CO2, temperature and humidity measurement device that can be easily integrated into most home automation systems
In this paper we report on CO2 Meter, a do-it-yourself carbon dioxide measuring device for the classroom. Part of the current measures for dealing with the SARS-CoV-2 pandemic is proper ventilation in indoor settings. This is especially important in schools with students coming back to the classroom even with high incidents rates. Static ventilation patterns do not consider the individual situation for a particular class. Influencing factors like the type of activity, the physical structure or the room occupancy are not incorporated. Also, existing devices are rather expensive and often provide only limited information and only locally without any networking. This leaves the potential of analysing the situation across different settings untapped. Carbon dioxide level can be used as an indicator of air quality, in general, and of aerosol load in particular. Since, according to the latest findings, SARS-CoV-2 can be transmitted primarily in the form of aerosols, carbon dioxide may be used as a proxy for the risk of a virus infection. Hence, schools could improve the indoor air quality and potentially reduce the infection risk if they actually had measuring devices available in the classroom. Our device supports schools in ventilation and it allows for collecting data over the Internet to enable a detailed data analysis and model generation. First deployments in schools at different levels were received very positively. A pilot installation with a larger data collection and analysis is underway.