Refine
Institute
Language
- English (4)
Document Type
- Article (2)
- Conference Proceeding (2)
Keywords
- icy moons (2)
- space missions (2)
- Antarctica (1)
- Deutsche Astrobiologische Gesellschaft (DAbG) (1)
- German Aerospace Center (DLR) (1)
- Jupiter (1)
- Mars (1)
- Planetary exploration (1)
- habitability (1)
- habitability, (1)
Is part of the Bibliography
- no (4)
The search for life on Mars and in the Solar System - strategies, logistics and infrastructures
(2018)
The question "Are we alone in the Universe?" is perhaps the most fundamental one that affects mankind. How can we address the search for life in our Solar System? Mars, Enceladus and Europa are the focus of the search for life outside the terrestrial biosphere. While it is more likely to find remnants of life (fossils of extinct life) on Mars because of its past short time window of the surface habitability, it is probably more likely to find traces of extant life on the icy moons and ocean worlds of Jupiter and Saturn. Nevertheless, even on Mars there could still be a chance to find extant life in niches near to the surface or in just discovered subglacial lakes beneath the South Pole ice cap. Here, the different approaches for the detection of traces of life in the form of biosignatures including pre-biotic molecules will be presented. We will outline the required infrastructure for this enterprise and give examples of future mission concepts to investigate the presence of life on other planets and moons. Finally, we will provide suggestions on methods, techniques, operations and strategies for preparation and realization of future life detection missions.
In this chapter, the key technologies and the instrumentation required for the subsurface exploration of ocean worlds are discussed. The focus is laid on Jupiter’s moon Europa and Saturn’s moon Enceladus because they have the highest potential for such missions in the near future. The exploration of their oceans requires landing on the surface, penetrating the thick ice shell with an ice-penetrating probe, and probably diving with an underwater vehicle through dozens of kilometers of water to the ocean floor, to have the chance to find life, if it exists. Technologically, such missions are extremely challenging. The required key technologies include power generation, communications, pressure resistance, radiation hardness, corrosion protection, navigation, miniaturization, autonomy, and sterilization and cleaning. Simpler mission concepts involve impactors and penetrators or – in the case of Enceladus – plume-fly-through missions.
The quest for life on other planets is closely connected with the search for water in liquid state. Recent discoveries of deep oceans on icy moons like Europa and Enceladus have spurred an intensive discussion about how these waters can be accessed. The challenge of this endeavor lies in the unforeseeable requirements on instrumental characteristics both with respect to the scientific and technical methods. The TRIPLE/nanoAUV initiative is aiming at developing a mission concept for exploring exo-oceans and demonstrating the achievements in an earth-analogue context, exploring the ocean under the ice shield of Antarctica and lakes like Dome-C on the Antarctic continent.
Icy bodies with subsurface oceans are a prime target for astrobiology investigations, with an increasing number of scientists participating in the planning, development, and realization of space missions to these worlds. Within Germany, the Ocean Worlds and Icy Moons working group of the German Astrobiology Society provides an invaluable platform for scientists and engineers from universities and other organizations with a passion for icy ocean worlds to share knowledge and start collaborations. We here present an overview about astrobiology research activities related to icy ocean worlds conducted either in Germany or in strong collaboration with scientists in Germany. With recent developments, Germany offers itself as a partner to contribute to icy ocean world missions.