### Refine

#### Year of publication

#### Document Type

- Article (18)
- Conference Proceeding (12)
- Other (2)
- Part of a Book (1)
- Diploma Thesis (1)
- Doctoral Thesis (1)
- Master's Thesis (1)
- Report (1)

#### Keywords

- avalanche (6)
- snow (4)
- Analogue Environments (1)
- Antarctic Glaciology (1)
- Antarctica (1)
- Avalanche (1)
- Cryobot (1)
- Extraterrestrial Glaciology (1)
- Glaciological instruments and methods (1)
- Ice Melting (1)
- Ice melting probe (1)
- Ice penetration (1)
- Icy Moons (1)
- Icy moons (1)
- Jupiter (1)
- Low-field NMR (1)
- Mars (1)
- Melting Efficiency (1)
- Melting Performance (1)
- Melting Probe (1)

The powerful avalanche simulation toolbox RAMMS (Rapid Mass Movements) is based on a depth-averaged
hydrodynamic system of equations with a Voellmy-Salm friction relation. The two empirical friction parameters
μ and correspond to a dry Coulomb friction and a viscous resistance, respectively. Although μ and lack a
proper physical explanation, 60 years of acquired avalanche data in the Swiss Alps made a systematic calibration
possible. RAMMS can therefore successfully model avalanche flow depth, velocities, impact pressure and run
out distances. Pudasaini and Hutter (2003) have proposed extended, rigorously derived model equations that
account for local curvature and twist. A coordinate transformation into a reference system, applied to the actual
mountain topography of the natural avalanche path, is performed. The local curvature and the twist of the
avalanche path induce an additional term in the overburden pressure. This leads to a modification of the Coulomb
friction, the free-surface pressure gradient, the pressure induced by the channel, and the gravity components
along and normal to the curved and twisted reference surface. This eventually guides the flow dynamics and
deposits of avalanches. In the present study, we investigate the influence of curvature on avalanche flow in
real mountain terrain. Simulations of real avalanche paths are performed and compared for the different models
approaches. An algorithm to calculate curvature in real terrain is introduced in RAMMS. This leads to a curvature
dependent friction relation in an extended version of the Voellmy-Salm model equations. Our analysis provides
yet another step in interpreting the physical meaning and significance of the friction parameters used in the
RAMMS computational environment.

Numerical models have become an essential part of snow avalanche engineering. Recent
advances in understanding the rheology of flowing snow and the mechanics of entrainment and
deposition have made numerical models more reliable. Coupled with field observations and historical
records, they are especially helpful in understanding avalanche flow in complex terrain. However, the
application of numerical models poses several new challenges to avalanche engineers. A detailed
understanding of the avalanche phenomena is required to specify initial conditions (release zone
dimensions and snowcover entrainment rates) as well as the friction parameters, which are no longer
based on empirical back-calculations, rather terrain roughness, vegetation and snow properties. In this
paper we discuss these problems by presenting the computer model RAMMS, which was specially
designed by the SLF as a practical tool for avalanche engineers. RAMMS solves the depth-averaged
equations governing avalanche flow with first and second-order numerical solution schemes. A
tremendous effort has been invested in the implementation of advanced input and output features.
Simulation results are therefore clearly and easily visualized to simplify their interpretation. More
importantly, RAMMS has been applied to a series of well-documented avalanches to gauge model
performance. In this paper we present the governing differential equations, highlight some of the input
and output features of RAMMS and then discuss the simulation of the Gatschiefer avalanche that
occurred in April 2008, near Klosters/Monbiel, Switzerland.

Using results from an 8 m2 instrumented force plate we describe field measurements of normal and shear stresses, and fluid pore pressure for a debris flow. The flow depth increased from 0.1 to 1 m within the first 12 s of flow front arrival, remained relatively constant until 100 s, and then gradually decreased to 0.5 m by 600 s. Normal and shear stresses and pore fluid pressure varied in-phase with the flow depth. Calculated bulk densities are ρb = 2000–2250 kg m−3 for the bulk flow and ρf = 1600–1750 kg m−3 for the fluid phase. The ratio of effective normal stress to shear stress yields a Coulomb basal friction angle of ϕ = 26° at the flow front. We did not find a strong correlation between the degree of agitation in the flow, estimated using the signal from a geophone on the force plate, and an assumed dynamic pore fluid pressure. Our data support the idea that excess pore-fluid pressures are long lived in debris flows and therefore contribute to their unusual mobility.

This paper examines the positive and negative aspects of a range of interpretations of nearest-neighbours models. Measures-oriented and distributionoriented verification methods are applied to categorial, probabilistic and descriptive interpretations of nearest neighbours used operationally in avalanche forecasting in Scotland and Switzerland. The dependence of skill and accuracy measures on base rate is illustrated. The purpose of the forecast and the definition of events are important variables in determining the quality of the forecast. A discussion of the application of different interpretations in operational avalanche forecasting is presented.

In this paper we consider low Péclet number flow in bead packs. A series of relaxation exchange experiments has been conducted and evaluated by ILT analysis. In the resulting correlation maps, we observed a collapse of the signal and a translation towards smaller relaxation times with increasing flow rates, as well as a signal tilt with respect to the diagonal. In the discussion of the phenomena we present a mathematical theory for relaxation exchange experiments that considers both diffusive and advective transport. We perform simulations based on this theory and discuss them with respect to the conducted experiments.

This paper describes the implementation of topographic curvature effects within the RApid Mass MovementS (RAMMS) snow avalanche simulation toolbox. RAMMS is based on a model similar to shallow water equations with a Coulomb friction relation and the velocity dependent Voellmy drag. It is used for snow avalanche risk assessment in Switzerland. The snow avalanche simulation relies on back calculation of observed avalanches. The calibration of the friction parameters depends on characteristics of the avalanche track. The topographic curvature terms are not yet included in the above mentioned classical model. Here, we fundamentally improve this model by mathematically and physically including the topographic curvature effects. By decomposing the velocity dependent friction into a topography dependent term that accounts for a curvature enhancement in the Coulomb friction, and a topography independent contribution similar to the classical Voellmy drag, we construct a general curvature dependent frictional resistance, and thus propose new extended model equations. With three site-specific examples, we compare the apparent frictional resistance of the new approach, which includes topographic curvature effects, to the classical one. Our simulation results demonstrate substantial effects of the curvature on the flow dynamics e.g., the dynamic pressure distribution along the slope. The comparison of resistance coefficients between the two models demonstrates that the physically based extension presents an improvement to the classical approach. Furthermore a practical example highlights its influence on the pressure outline in the run out zone of the avalanche. Snow avalanche dynamics modeling natural terrain curvature centrifugal force friction coefficients.