Sleep scoring is a necessary and time-consuming task in sleep studies. In animal models (such as mice) or in humans, automating this tedious process promises to facilitate long-term studies and to promote sleep biology as a data-driven f ield. We introduce a deep neural network model that is able to predict different states of consciousness (Wake, Non-REM, REM) in mice from EEG and EMG recordings with excellent scoring results for out-of-sample data. Predictions are made on epochs of 4 seconds length, and epochs are classified as artifactfree or not. The model architecture draws on recent advances in deep learning and in convolutional neural networks research. In contrast to previous approaches towards automated sleep scoring, our model does not rely on manually defined features of the data but learns predictive features automatically. We expect deep learning models like ours to become widely applied in different fields, automating many repetitive cognitive tasks that were previously difficult to tackle.
Sleep spindles are neurophysiological phenomena that appear to be linked to memory formation and other functions of the central nervous system, and that can be observed in electroencephalographic recordings (EEG) during sleep. Manually identified spindle annotations in EEG recordings suffer from substantial intra- and inter-rater variability, even if raters have been highly trained, which reduces the reliability of spindle measures as a research and diagnostic tool. The Massive Online Data Annotation (MODA) project has recently addressed this problem by forming a consensus from multiple such rating experts, thus providing a corpus of spindle annotations of enhanced quality. Based on this dataset, we present a U-Net-type deep neural network model to automatically detect sleep spindles. Our model’s performance exceeds that of the state-of-the-art detector and of most experts in the MODA dataset. We observed improved detection accuracy in subjects of all ages, including older individuals whose spindles are particularly challenging to detect reliably. Our results underline the potential of automated methods to do repetitive cumbersome tasks with super-human performance.
Reliable automation of the labor-intensive manual task of scoring animal sleep can facilitate the analysis of long-term sleep studies. In recent years, deep-learning-based systems, which learn optimal features from the data, increased scoring accuracies for the classical sleep stages of Wake, REM, and Non-REM. Meanwhile, it has been recognized that the statistics of transitional stages such as pre-REM, found between Non-REM and REM, may hold additional insight into the physiology of sleep and are now under vivid investigation. We propose a classification system based on a simple neural network architecture that scores the classical stages as well as pre-REM sleep in mice. When restricted to the classical stages, the optimized network showed state-of-the-art classification performance with an out-of-sample F1 score of 0.95 in male C57BL/6J mice. When unrestricted, the network showed lower F1 scores on pre-REM (0.5) compared to the classical stages. The result is comparable to previous attempts to score transitional stages in other species such as transition sleep in rats or N1 sleep in humans. Nevertheless, we observed that the sequence of predictions including pre-REM typically transitioned from Non-REM to REM reflecting sleep dynamics observed by human scorers. Our findings provide further evidence for the difficulty of scoring transitional sleep stages, likely because such stages of sleep are under-represented in typical data sets or show large inter-scorer variability. We further provide our source code and an online platform to run predictions with our trained network.
Schlafspindeln – Funktion, Detektion und Nutzung als Biomarker für die psychiatrische Diagnostik
(2022)
Hintergrund:
Die Schlafspindel ist ein Graphoelement des Elektroenzephalogramms
(EEG), das im Leicht- und Tiefschlaf beobachtet werden kann. Veränderungen der
Spindelaktivität wurden für verschiedene psychiatrische Erkrankungen beschrieben. Schlafspindeln zeigen aufgrund ihrer relativ konstanten Eigenschaften Potenzial als Biomarker in der psychiatrischen Diagnostik.
Methode:
Dieser Beitrag liefert einen Überblick über den Stand der Wissenschaft
zu Eigenschaften und Funktionen der Schlafspindeln sowie über beschriebene
Veränderungen der Spindelaktivität bei psychiatrischen Erkrankungen. Verschiedene methodische Ansätze und Ausblicke zur Spindeldetektion werden hinsichtlich deren Anwendungspotenzial in der psychiatrischen Diagnostik erläutert.
Ergebnisse und Schlussfolgerung:
Während Veränderungen der Spindelaktivität
bei psychiatrischen Erkrankungen beschrieben wurden, ist deren exaktes Potenzial für die psychiatrische Diagnostik noch nicht ausreichend erforscht. Diesbezüglicher Erkenntnisgewinn wird in der Forschung gegenwärtig durch ressourcenintensive und fehleranfällige Methoden zur manuellen oder automatisierten Spindeldetektion ausgebremst. Neuere Detektionsansätze, die auf Deep-Learning-Verfahren basieren, könnten die Schwierigkeiten bisheriger Detektionsmethoden überwinden und damit neue Möglichkeiten für die praktisch