Refine
Year of publication
Institute
Has Fulltext
- no (36)
Document Type
- Article (33)
- Conference Proceeding (2)
- Part of a Book (1)
Keywords
- Light-addressable potentiometric sensor (3)
- LAPS (2)
- Chemical images (1)
- Chemical imaging (1)
- Chemical imaging sensor (1)
- Chemical sensor (1)
- EIS capacitive sensor (1)
- Field-effect device (1)
- Light-addressable Potentiometric Sensor (1)
- MOS (1)
Visualization of the recovery process of defects in a cultured cell layer by chemical imaging sensor
(2016)
The chemical imaging sensor is a field-effect sensor which is able to visualize both the distribution of ions (in LAPS mode) and the distribution of impedance (in SPIM mode) in the sample. In this study, a novel cell assay is proposed, in which the chemical imaging sensor operated in SPIM mode is applied to monitor the recovery of defects in a cell layer brought into proximity of the sensing surface. A reduced impedance at a defect formed artificially in a cell layer was successfully visualized in a photocurrent image. The cell layer was cultured over two weeks, during which the temporal change of the photocurrent distribution corresponding to the recovery of the defect was observed.
Light-addressable potentiometric sensors for quantitative spatial imaging of chemical species
(2017)
A light-addressable potentiometric sensor (LAPS) is a semiconductor-based chemical sensor, in which a measurement site on the sensing surface is defined by illumination. This light addressability can be applied to visualize the spatial distribution of pH or the concentration of a specific chemical species, with potential applications in the fields of chemistry, materials science, biology, and medicine. In this review, the features of this chemical imaging sensor technology are compared with those of other technologies. Instrumentation, principles of operation, and various measurement modes of chemical imaging sensor systems are described. The review discusses and summarizes state-of-the-art technologies, especially with regard to the spatial resolution and measurement speed; for example, a high spatial resolution in a submicron range and a readout speed in the range of several tens of thousands of pixels per second have been achieved with the LAPS. The possibility of combining this technology with microfluidic devices and other potential future developments are discussed.
The chemical imaging sensor is capable of visualizing the ion distribution. The spatial resolution of the chemical image depends on the horizontal diffusion of photocarriers generated by illumination. In this study; a novel optics is designed to realize a hybrid illumination of a ring of constant light and a spot of modulated light. Improved spatial resolution of the order of few tens of microns was successfully demonstrated.
A high-Q resonance-mode measurement of EIS capacitive sensor by elimination of series resistance
(2017)
An EIS capacitive sensor is a semiconductor-based potentiometric sensor, which is sensitive to the ion concentration or pH value of the solution in contact with the sensing surface. To detect a small change in the ion concentration or pH, a small capacitance change must be detected. Recently, a resonance-mode measurement was proposed, in which an inductor was connected to the EIS capacitive sensor and the resonant frequency was correlated with the pH value. In this study, the Q factor of the resonant circuit was enhanced by canceling the internal resistance of the reference electrode and the internal resistance of the inductor coil with the help of a bypass capacitor and a negative impedance converter, respectively. 1% variation of the signal in the developed system corresponded to a pH change of 3.93 mpH, which was about 1/12 of the conventional method, suggesting a better performance in detection of a small pH change.
To study chemical and biological processes, spatially resolved determination of the concentrations of one or more analyte species is of distinct interest. With a light-addressable potentiometric sensor (LAPS), chemical images can be created, which visualize the concentration distribution above the sensor plate. One important challenge is to achieve a good lateral resolution in order to detect events that take place in a small and limited region. LAPS utilizes a focused light spot to address the measurement region. By moving this light spot along the semiconductor sensor plate, the concentration distribution can be observed. In this study, we show that utilizing a pulse as light excitation instead of a traditionally used continuously modulated light excitation, the lateral resolution can be improved by a factor of 6 or more.
The light-addressable potentiometric sensor (LAPS) has the unique feature to address different regions of a sensor surface without the need of complex structures. Measurements at different locations on the sensor surface can be performed in a common analyte solution, which distinctly simplifies the fluidic set-up. However, the measurement in a single analyte chamber prevents the application of different drugs or different concentrations of a drug to each measurement spot at the same time as in the case of multi-reservoir-based set-ups. In this work, the authors designed a LAPS-based set-up for cell culture screening that utilises magnetic beads loaded with the endotoxin (lipopolysaccharides, LPS), to generate a spatially distributed gradient of analyte concentration. Different external magnetic fields can be adjusted to move the magnetic beads loaded with a specific drug within the measurement cell. By recording the metabolic activities of a cell layer cultured on top of the LAPS surface, this work shows the possibility to apply different concentrations of a sample along the LAPS measurement spots within a common analyte solution.
Light-addressable potentiometric sensor as a sensing element in plug-based microfluidic devices
(2016)
A plug-based microfluidic system based on the principle of the light-addressable potentiometric sensor (LAPS) is proposed. The LAPS is a semiconductor-based chemical sensor, which has a free addressability of the measurement point on the sensing surface. By combining a microfluidic device and LAPS, ion sensing can be performed anywhere inside the microfluidic channel. In this study, the sample solution to be measured was introduced into the channel in a form of a plug with a volume in the range of microliters. Taking advantage of the light-addressability, the position of the plug could be monitored and pneumatically controlled. With the developed system, the pH value of a plug with a volume down to 400 nL could be measured. As an example of plug-based operation, two plugs were merged in the channel, and the pH change was detected by differential measurement.
The light-addressable potentiometric sensor (LAPS) and scanning photo-induced impedance microscopy (SPIM) are two closely related methods to visualise the distributions of chemical species and impedance, respectively, at the interface between the sensing surface and the sample solution. They both have the same field-effect structure based on a semiconductor, which allows spatially resolved and label-free measurement of chemical species and impedance in the form of a photocurrent signal generated by a scanning light beam. In this article, the principles and various operation modes of LAPS and SPIM, functionalisation of the sensing surface for measuring various species, LAPS-based chemical imaging and high-resolution sensors based on silicon-on-sapphire substrates are described and discussed, focusing on their technical details and prospective applications.
Chemical imaging systems allow the visualisation of the distribution of chemical species on the sensor surface. This work represents a new flexible approach to read out light-addressable potentiometric sensors (LAPS) with the help of a digital light processing (DLP) set-up. The DLP, known well for video projectors, consists of a mirror-array MEMS device, which allows fast and flexible generation of light patterns. With the help of these light patterns, the sensor surface of the LAPS device can be addressed. The DLP approach has several advantages compared to conventional LAPS set-ups, e.g., the spot size and the shape of the light pointer can be changed easily and no mechanical movement is necessary, which reduces the size of the set-up and increases the stability and speed of the measurement. In addition, the modulation frequency and intensity of the light beam are important parameters of the LAPS set-up. Within this work, the authors will discuss two different ways of light modulation by the DLP set-up, investigate the influence of different modulation frequencies and different light intensities as well as demonstrate the scanning capabilities of the new set-up by pH mapping on the sensor surface.
The development of new interfaces for (bio-)chemical sensors requires comprehensive analyses and testing. The light-addressable potentiometric sensor (LAPS) can be used as a platform to investigate the sensitivity of a newly developed interface towards (bio-)chemical agents. LAPS measurements are spatially resolved by utilisation of focused light beams to define individual measurement spots. In this work, a new digitally modulated LAPS set-up based on an FPGA design will be introduced to increase the number of measurement spots, to shorten the measurement time and to improve the measurement accuracy.