Refine
Year of publication
Institute
Document Type
- Article (83)
- Conference Proceeding (5)
- Part of a Book (2)
- Doctoral Thesis (2)
- Habilitation (2)
- Book (1)
Keywords
- Alzheimer's disease (1)
- Coefficient of ocular rigidity (1)
- Corneo-scleral shell (1)
- Cost-effectiveness (1)
- Differential tonometry (1)
- Endothelial dysfunction (1)
- Eyeball (1)
- Geriatric (1)
- Glaucoma (1)
- Haemodialysis (1)
Retinal endothelial function in cardiovascular risk patients: A randomized controlled exercise trial
(2020)
The aim of this study was to investigate, for the first time, the effects of high-intensity interval training (HIIT) on retinal microvascular endothelial function in cardiovascular (CV) risk patients. In the randomized controlled trial, middle-aged and previously sedentary patients with increased CV risk (aged 58 ± 6 years) with ≥ two CV risk factors were randomized into a 12-week HIIT (n = 33) or control group (CG, n = 36) with standard physical activity recommendations. A blinded examiner measured retinal endothelial function by flicker light-induced maximal arteriolar (ADmax) and venular (VDmax) dilatation as well as the area under the arteriolar (AFarea) and venular (VFarea) flicker curve using a retinal vessel analyzer. Standardized assessments of CV risk factors, cardiorespiratory fitness, and retinal endothelial function were performed before and after HIIT. HIIT reduced body mass index, fat mass, and low-density lipoprotein and increased muscle mass and peak oxygen uptake (VO2peak). Both ADmax (pre: 2.7 ± 2.1%, post: 3.0 ± 2.2%, P = .018) and AFarea (pre: 32.6 ± 28.4%*s, post: 37.7 ± 30.6%*s, P = .016) increased after HIIT compared with CG (ADmax, pre: 3.2 ± 1.8%, post: 2.9 ± 1.8%, P = .254; AFarea, pre: 41.6 ± 28.5%*s, post: 37.8 ± 27.0%*s, P = .186). Venular function remained unchanged after HIIT. There was a significant association between ∆-change VO2peak and ∆-changes ADmax and AFarea (P = .026, R² = 0.073; P = .019, R² = 0.081, respectively). 12-weeks of HIIT improved retinal endothelial function in middle-aged patients with increased CV risk independent of the reduction in classical CV risk factors. Exercise has the potential to reverse or at least postpone progression of small vessel disease in older adults with increased CV risk under standard medication. Dynamic retinal vessel analysis seems to be a sensitive tool to detect treatment effects of exercise interventions on retinal microvascular endothelial function in middle-aged individuals with increased CV risk.
Purpose: A precise determination of the corneal diameter is essential for the diagnosis of various ocular diseases, cataract and refractive surgery as well as for the selection and fitting of contact lenses. The aim of this study was to investigate the agreement between two automatic and one manual method for corneal diameter determination and to evaluate possible diurnal variations in corneal diameter.
Patients and Methods: Horizontal white-to-white corneal diameter of 20 volunteers was measured at three different fixed times of a day with three methods: Scheimpflug method (Pentacam HR, Oculus), placido based topography (Keratograph 5M, Oculus) and manual method using an image analysis software at a slitlamp (BQ900, Haag-Streit).
Results: The two-factorial analysis of variance could not show a significant effect of the different instruments (p = 0.117), the different time points (p = 0.506) and the interaction between instrument and time point (p = 0.182). Very good repeatability (intraclass correlation coefficient ICC, quartile coefficient of dispersion QCD) was found for all three devices. However, manual slitlamp measurements showed a higher QCD than the automatic measurements with the Keratograph 5M and the Pentacam HR at all measurement times.
Conclusion: The manual and automated methods used in the study to determine corneal diameter showed good agreement and repeatability. No significant diurnal variations of corneal diameter were observed during the period of time studied.
Purpose: Impaired paravascular drainage of β-Amyloid (Aβ) has been proposed as a contributing cause for sporadic Alzheimer’s disease (AD), as decreased cerebral blood vessel pulsatility and subsequently reduced propulsion in this pathway could lead to the accumulation and deposition of Aβ in the brain. Therefore, we hypothesized that there is an increased impairment in pulsatility across AD spectrum.
Patients and Methods: Using transcranial color-coded duplex sonography (TCCS) the resistance and pulsatility index (RI; PI) of the middle cerebral artery (MCA) in healthy controls (HC, n=14) and patients with AD dementia (ADD, n=12) were measured. In a second step, we extended the sample by adding patients with mild cognitive impairment (MCI) stratified by the presence (MCI-AD, n=8) or absence of biomarkers (MCI-nonAD, n=8) indicative for underlying AD pathology, and compared RI and PI across the groups. To control for atherosclerosis as a confounder, we measured the arteriolar-venular-ratio of retinal vessels.
Results: Left and right RI (p=0.020; p=0.027) and left PI (p=0.034) differed between HC and ADD controlled for atherosclerosis with AUCs of 0.776, 0.763, and 0.718, respectively. The RI and PI of MCI-AD tended towards ADD, of MCI-nonAD towards HC, respectively. RIs and PIs were associated with disease severity (p=0.010, p=0.023).
Conclusion: Our results strengthen the hypothesis that impaired pulsatility could cause impaired amyloid clearance from the brain and thereby might contribute to the development of AD. However, further studies considering other factors possibly influencing amyloid clearance as well as larger sample sizes are needed.
Purpose: Image analysis by the retinal vessel analyzer (RVA) observes retinal vessels in their dynamic state online noninvasively along a chosen vessel segment. It has been found that high-frequency diameter changes in the retinal artery blood column along the vessel increase significantly in anamnestically healthy volunteers with increasing age and in patients with glaucoma during vascular dilation. This study was undertaken to investigate whether longitudinal sections of the retinal artery blood column are altered in systemic hypertension.
Methods: Retinal arteries of 15 untreated patients with essential arterial hypertension (age, 50.9 ± 11.9 years) and of 15 age-matched anamnestically healthy volunteers were examined by RVA. After baseline assessment, a monochromatic luminance flicker (530–600 nm; 12.5 Hz; 20 s) was applied to evoke retinal vasodilation. Differences in amplitude and frequency of spatial artery blood column diameter change along segments (longitudinal arterial profiles) of 1 mm in length were measured and analyzed using Fourier transformation.
Results: In the control group, average reduced power spectra (ARPS) of longitudinal arterial profiles did not differ when arteries changed from constriction to dilation. In the systemic hypertension group, ARPS during constriction, baseline, and restoration were identical and differed from ARPS during dilation (P < 0.05). Longitudinal arterial profiles in both groups showed significant dissimilitude at baseline and restoration (P < 0.05).
Conclusions: The retinal artery blood column demonstrates microstructural alterations in systemic hypertension and is less irregular along the vessel axis during vessel dilation. These microstructural changes may be an indication of alterations in vessel wall rigidity, vascular endothelial function, and smooth muscle cells in this disease, leading to impaired perfusion and regulation.