Refine
Year of publication
Institute
Has Fulltext
- no (48)
Document Type
- Conference Proceeding (23)
- Article (13)
- Part of a Book (11)
- Book (1)
Keywords
- MINLP (5)
- Engineering optimization (4)
- Optimization (3)
- Powertrain (3)
- Pump System (3)
- Technical Operations Research (3)
- Energy efficiency (2)
- Experimental validation (2)
- Optimal Topology (2)
- Process engineering (2)
Is part of the Bibliography
- no (48)
Water distribution systems are an essential supply infrastructure for cities. Given that climatic and demographic influences will pose further challenges for these infrastructures in the future, the resilience of water supply systems, i.e. their ability to withstand and recover from disruptions, has recently become a subject of research. To assess the resilience of a WDS, different graph-theoretical approaches exist. Next to general metrics characterizing the network topology, also hydraulic and technical restrictions have to be taken into account. In this work, the resilience of an exemplary water distribution network of a major German city is assessed, and a Mixed-Integer Program is presented which allows to assess the impact of capacity adaptations on its resilience.
To maximize the travel distances of battery electric vehicles such as cars or buses for a given amount of stored energy, their powertrains are optimized energetically. One key part within optimization models for electric powertrains is the efficiency map of the electric motor. The underlying function is usually highly nonlinear and nonconvex and leads to major challenges within a global optimization process. To enable faster solution times, one possibility is the usage of piecewise linearization techniques to approximate the nonlinear efficiency map with linear constraints. Therefore, we evaluate the influence of different piecewise linearization modeling techniques on the overall solution process and compare the solution time and accuracy for methods with and without explicitly used binary variables.
In order to maximize the possible travel distance of battery electric vehicles with one battery charge, it is mandatory to adjust all components of the powertrain carefully to each other. While current vehicle designs mostly simplify the powertrain rigorously and use an electric motor in combination with a gearbox with only one fixed transmission ratio, the use of multi-gear systems has great potential. First, a multi-speed system is able to improve the overall energy efficiency. Secondly, it is able to reduce the maximum momentum and therefore to reduce the maximum current provided by the traction battery, which results in a longer battery lifetime. In this paper, we present a systematic way to generate multi-gear gearbox designs that—combined with a certain electric motor—lead to the most efficient fulfillment of predefined load scenarios and are at the same time robust to uncertainties in the load. Therefore, we model the electric motor and the gearbox within a Mixed-Integer Nonlinear Program, and optimize the efficiency of the mechanical parts of the powertrain. By combining this mathematical optimization program with an unsupervised machine learning algorithm, we are able to derive global-optimal gearbox designs for practically relevant momentum and speed requirements.
In product development, numerous design decisions have to be made. Multi-domain virtual prototyping provides a variety of tools to assess technical feasibility of design options, however often requires substantial computational effort for just a single evaluation. A special challenge is therefore the optimal design of product families, which consist of a group of products derived from a common platform. Finding an optimal platform configuration (stating what is shared and what is individually designed for each product) and an optimal design of all products simultaneously leads to a mixed-integer nonlinear black-box optimization model. We present an optimization approach based on metamodels and a metaheuristic. To increase computational efficiency and solution quality, we compare different types of Gaussian process regression metamodels adapted from the domain of machine learning, and combine them with a genetic algorithm. We illustrate our approach on the example of a product family of electrical drives, and investigate the trade-off between solution quality and computational overhead.
The transition within transportation towards battery electric vehicles can lead to a more sustainable future. To account for the development goal ‘climate action’ stated by the United Nations, it is mandatory, within the conceptual design phase, to derive energy-efficient system designs. One barrier is the uncertainty of the driving behaviour within the usage phase. This uncertainty is often addressed by using a stochastic synthesis process to derive representative driving cycles and by using cycle-based optimization. To deal with this uncertainty, a new approach based on a stochastic optimization program is presented. This leads to an optimization model that is solved with an exact solver. It is compared to a system design approach based on driving cycles and a genetic algorithm solver. Both approaches are applied to find efficient electric powertrains with fixed-speed and multi-speed transmissions. Hence, the similarities, differences and respective advantages of each optimization procedure are discussed.
The development of resilient technical systems is a challenging task, as the system should adapt automatically to unknown disturbances and component failures. To evaluate different approaches for deriving resilient technical system designs, we developed a modular test rig that is based on a pumping system. On the basis of this example
system, we present metrics to quantify resilience and an algorithmic approach to improve resilience. This approach enables the pumping system to automatically react on unknown disturbances and to reduce the impact of component failures. In this case, the system is able to automatically adapt its topology by activating additional valves. This enables the system to still reach a minimum performance, even in case of failures. Furthermore, timedependent disturbances are evaluated continuously, deviations from the original state are automatically detected and anticipated in the future. This allows to reduce the impact of future disturbances and leads to a more resilient
system behaviour.
Water suppliers are faced with the great challenge of achieving high-quality and, at the same time, low-cost water supply. In practice, the focus is set on the most beneficial maintenance measures and/or capacity adaptations of existing water distribution systems (WDS). Since climatic and demographic influences will pose further challenges in the future, the resilience enhancement of WDS, i.e. the enhancement of their capability to withstand and recover from disturbances, has been in particular focus recently. To assess the resilience of WDS, metrics based on graph theory have been proposed. In this study, a promising approach is applied to assess the resilience of the WDS for a district in a major German City. The conducted analysis provides insight into the process of actively influencing the
resilience of WDS
Algorithmic design and resilience assessment of energy efficient high-rise water supply systems
(2018)
High-rise water supply systems provide water flow and suitable pressure in all levels of tall buildings. To design such state-of-the-art systems, the consideration of energy efficiency and the anticipation of component failures are mandatory. In this paper, we use Mixed-Integer Nonlinear Programming to compute an optimal placement of pipes and pumps, as well as an optimal control strategy.Moreover, we consider the resilience of the system to pump failures. A resilient system is able to fulfill a predefined minimum functionality even though components fail or are restricted in their normal usage. We present models to measure and optimize the resilience. To demonstrate our approach, we design and analyze an optimal resilient decentralized water supply system inspired by a real-life hotel building.
This chapter describes three general strategies to master uncertainty in technical systems: robustness, flexibility and resilience. It builds on the previous chapters about methods to analyse and identify uncertainty and may rely on the availability of technologies for particular systems, such as active components. Robustness aims for the design of technical systems that are insensitive to anticipated uncertainties. Flexibility increases the ability of a system to work under different situations. Resilience extends this characteristic by requiring a given minimal functional performance, even after disturbances or failure of system components, and it may incorporate recovery. The three strategies are described and discussed in turn. Moreover, they are demonstrated on specific technical systems.
Given industrial applications, the costs for the operation and maintenance of a pump system typically far exceed its purchase price. For finding an optimal pump configuration which minimizes not only investment, but life-cycle costs, methods like Technical Operations Research which is based on Mixed-Integer Programming can be applied. However, during the planning phase, the designer is often faced with uncertain input data, e.g. future load demands can only be estimated. In this work, we deal with this uncertainty by developing a chance-constrained two-stage (CCTS) stochastic program. The design and operation of a booster station working under uncertain load demand are optimized to minimize total cost including purchase price, operation cost incurred by energy consumption and penalty cost resulting from water shortage. We find optimized system layouts using a sample average approximation (SAA) algorithm, and analyze the results for different risk levels of water shortage. By adjusting the risk level, the costs and performance range of the system can be balanced, and thus the
system’s resilience can be engineered