Refine
Institute
Has Fulltext
- no (11)
Language
- English (11)
Document Type
- Article (11)
Keywords
Is part of the Bibliography
- no (11)
Vestibular effects of a 7 Tesla MRI examination compared to 1.5 T and 0 T in healthy volunteers
(2014)
Ultra-high-field MRI (7 Tesla (T) and above) elicits more temporary side-effects compared to 1.5 T and 3 T, e.g. dizziness or “postural instability” even after exiting the scanner. The current study aims to assess quantitatively vestibular performance before and after exposure to different MRI scenarios at 7 T, 1.5 T and 0 T. Sway path and body axis rotation (Unterberger's stepping test) were quantitatively recorded in a total of 46 volunteers before, 2 minutes after, and 15 minutes after different exposure scenarios: 7 T head MRI (n = 27), 7 T no RF (n = 22), 7 T only B₀ (n = 20), 7 T in & out B₀ (n = 20), 1.5 T no RF (n = 20), 0 T (n = 15). All exposure scenarios lasted 30 minutes except for brief one minute exposure in 7 T in & out B₀. Both measures were documented utilizing a 3D ultrasound system. During sway path evaluation, the experiment was repeated with eyes both open and closed. Sway paths for all long-lasting 7 T scenarios (normal, no RF, only B₀) with eyes closed were significantly prolonged 2 minutes after exiting the scanner, normalizing after 15 minutes. Brief exposure to 7 T B₀ or 30 minutes exposure to 1.5 T or 0 T did not show significant changes. End positions after Unterberger's stepping test were significantly changed counter-clockwise after all 7 T scenarios, including the brief in & out B₀ exposure. Shorter exposure resulted in a smaller alteration angle. In contrast to sway path, reversal of changes in body axis rotation was incomplete after 15 minutes. 1.5 T caused no rotational changes. The results show that exposure to the 7 Tesla static magnetic field causes only a temporary dysfunction or “over-compensation” of the vestibular system not measurable at 1.5 or 0 Tesla. Radiofrequency fields, gradient switching, and orthostatic dysregulation do not seem to play a role.
SAR Simulations & Safety
(2017)
Safety of subjects during radiofrequency exposure in ultra-high-field magnetic resonance imaging
(2020)
Magnetic resonance imaging (MRI) is one of the most important medical imaging techniques. Since the introduction of MRI in the mid-1980s, there has been a continuous trend toward higher static magnetic fields to obtain i.a. a higher signal-to-noise ratio. The step toward ultra-high-field (UHF) MRI at 7 Tesla and higher, however, creates several challenges regarding the homogeneity of the spin excitation RF transmit field and the RF exposure of the subject. In UHF MRI systems, the wavelength of the RF field is in the range of the diameter of the human body, which can result in inhomogeneous spin excitation and local SAR hotspots. To optimize the homogeneity in a region of interest, UHF MRI systems use parallel transmit systems with multiple transmit antennas and time-dependent modulation of the RF signal in the individual transmit channels. Furthermore, SAR increases with increasing field strength, while the SAR limits remain unchanged. Two different approaches to generate the RF transmit field in UHF systems using antenna arrays close and remote to the body are investigated in this letter. Achievable imaging performance is evaluated compared to typical clinical RF transmit systems at lower field strength. The evaluation has been performed under consideration of RF exposure based on local SAR and tissue temperature. Furthermore, results for thermal dose as an alternative RF exposure metric are presented.
Objective
In local SAR compression algorithms, the overestimation is generally not linearly dependent on actual local SAR. This can lead to large relative overestimation at low actual SAR values, unnecessarily constraining transmit array performance.
Method
Two strategies are proposed to reduce maximum relative overestimation for a given number of VOPs. The first strategy uses an overestimation matrix that roughly approximates actual local SAR; the second strategy uses a small set of pre-calculated VOPs as the overestimation term for the compression.
Result
Comparison with a previous method shows that for a given maximum relative overestimation the number of VOPs can be reduced by around 20% at the cost of a higher absolute overestimation at high actual local SAR values.
Conclusion
The proposed strategies outperform a previously published strategy and can improve the SAR compression where maximum relative overestimation constrains the performance of parallel transmission.
The aim of the current study was to investigate the performance of integrated RF
transmit arrays with high channel count consisting of meander microstrip antennas
for body imaging at 7 T and to optimize the position and number of transmit ele-
ments. RF simulations using multiring antenna arrays placed behind the bore liner
were performed for realistic exposure conditions for body imaging. Simulations were
performed for arrays with as few as eight elements and for arrays with high channel
counts of up to 48 elements. The B1+ field was evaluated regarding the degrees of
freedom for RF shimming in the abdomen. Worst-case specific absorption rate
(SARwc ), SAR overestimation in the matrix compression, the number of virtual obser-
vation points (VOPs) and SAR efficiency were evaluated. Constrained RF shimming
was performed in differently oriented regions of interest in the body, and the devia-
tion from a target B1+ field was evaluated. Results show that integrated multiring
arrays are able to generate homogeneous B1+ field distributions for large FOVs, espe-
cially for coronal/sagittal slices, and thus enable body imaging at 7 T with a clinical
workflow; however, a low duty cycle or a high SAR is required to achieve homoge-
neous B1+ distributions and to exploit the full potential. In conclusion, integrated
arrays allow for high element counts that have high degrees of freedom for the pulse
optimization but also produce high SARwc , which reduces the SAR accuracy in the
VOP compression for low-SAR protocols, leading to a potential reduction in array
performance. Smaller SAR overestimations can increase SAR accuracy, but lead to a
high number of VOPs, which increases the computational cost for VOP evaluation
and makes online SAR monitoring or pulse optimization challenging. Arrays with
interleaved rings showed the best results in the study.