Refine
Institute
Has Fulltext
- no (8)
Document Type
- Conference Proceeding (7)
- Article (1)
Is part of the Bibliography
- no (8)
Development and Testing of a Low NOX Micromix Combustion Chamber for an Industrial Gas Turbine
(2017)
The Micromix combustion principle, based on cross-flow mixing of air and hydrogen, promises low emission applications in future gas turbines. The Micromix combustion takes place in several hundreds of miniaturized diffusion-type micro-flames. The major advantage is the inherent safety against flash-back and low NOx-emissions due to a very short residence time of reactants in the flame region. The paper gives insight into the Micromix design and scaling procedure for different energy densities and the interaction of scaling laws and key design drivers in gas turbine integration. Numerical studies, experimental testing, gas turbine integration and interface considerations are evaluated. The aerodynamic stabilization of the miniaturized flamelets and the resulting flow field, flame structure and NOx formation are analysed experimentally and numerically. The results show and confirm the successful adaption of the low NOx Micromix characteristics for a range of different nozzle sizes, energy densities and thermal power output.
Development and Testing of a Low NOx Micromix Combustion Chamber for an Industrial Gas Turbine
(2015)
Numerical Study on Increased Energy Density for the DLN Micromix Hydrogen Combustion Principle
(2014)
Combined with the use of renewable energy sources for
its production, Hydrogen represents a possible alternative gas
turbine fuel for future low emission power generation. Due to
its different physical properties compared to other fuels such
as natural gas, well established gas turbine combustion
systems cannot be directly applied for Dry Low NOx (DLN)
Hydrogen combustion. This makes the development of new
combustion technologies an essential and challenging task
for the future of hydrogen fueled gas turbines.
The newly developed and successfully tested “DLN
Micromix” combustion technology offers a great potential to
burn hydrogen in gas turbines at very low NOx emissions.
Aiming to further develop an existing burner design in terms
of increased energy density, a redesign is required in order to
stabilise the flames at higher mass flows and to maintain low
emission levels.
For this purpose, a systematic design exploration has
been carried out with the support of CFD and optimisation
tools to identify the interactions of geometrical and design
parameters on the combustor performance. Aerodynamic
effects as well as flame and emission formation are observed
and understood time- and cost-efficiently. Correlations
between single geometric values, the pressure drop of the
burner and NOx production have been identified as a result.
This numeric methodology helps to reduce the effort of
manufacturing and testing to few designs for single
validation campaigns, in order to confirm the flame stability
and NOx emissions in a wider operating condition field.