Refine
Year of publication
Institute
Document Type
- Article (127)
- Conference Proceeding (67)
- Part of a Book (14)
- Book (4)
- Lecture (3)
- Other (3)
- Report (2)
- Doctoral Thesis (1)
- Patent (1)
- Review (1)
Keywords
- Finite-Elemente-Methode (16)
- Einspielen <Werkstoff> (12)
- shakedown analysis (9)
- FEM (8)
- Limit analysis (6)
- Shakedown analysis (6)
- limit analysis (6)
- shakedown (5)
- Einspielanalyse (4)
- Shakedown (4)
Shock waves, explosions, impacts or cavitation bubble collapses may generate stress waves in solids causing cracks or unexpected dammage due to focussing, physical nonlinearity or interaction with existing cracks. There is a growing interest in wave propagation, which poses many novel problems to experimentalists and theorists.
Summary: This paper presents a methodology to study and understand the mechanics of stapled anastomotic behaviors by combining empirical experimentation and finite element analysis. Performance of stapled anastomosis is studied in terms of leakage and numerical results which are compared to in vitro experiments performed on fresh porcine tissue. Results suggest that leaks occur between the tissue and staple legs penetrating through the tissue.
Originalausgabe: Orthopädische Praxis Jg. 47. 2011 H. 11; S. 536-543. Mit freundlicher Genehmigung des Verlags Zusammenfassung: Auf der Basis von Patientenabfragen mittels Fragebogen zum Schmerzempfinden und zur Einschränkung bei Aktivitäten des alltäglichen Lebens wird die Langzeitwirkung der MBST® KernspinResonanz-Therapie bei Gonarthrose untersucht. An der Studie nahmen 39 Patienten teil, bei denen die Therapie bis zu vier Jahre zurückliegt. Neben einer Gesamtbetrachtung wird der Erfolg auch in Abhängigkeit von Alter, Geschlecht und sportlicher Aktivität analysiert. Insgesamt weist die Studie auf eine anhaltende Verbesserung des Gesundheitszustands mit zum Teil deutlicher Schmerzlinderung auch noch nach vier Jahren hin, jedoch mit einer leichten Schmerzzunahme gegen Ende des Untersuchungszeitraums von vier Jahren. Eine tendenziell positivere Wirkung bei Frauen, älteren Menschen oder auch sportlich nicht-aktiven Patienten lässt auf eine mögliche Beeinflussung des Erfolgs der Therapie durch (Über-)Belastung im Alltag schließen. Ein zusätzlich positiver Effekt der Therapie auf die Knochendichte ist ebenfalls denkbar, dies bleibt jedoch offen.
Diese Studie beschäftigte sich mit der Dämpfungswirkung von Schienbeinschonern, wie sie beim Fußball zum Einsatz kommen. Sie wurde mit Hilfe eines Pendelhammers durchgeführt, der verschiedene Aufschlagkräfte auf die Schoner ermöglichte. Dabei wurde deutlich, dass Schienbeinschoner die beste Wirkung bei Maximalkräften unterhalb von 5kN erreichen können, dass bei größerer Belastung allerdings Verbesserungsbedarf besteht. Hierfür konnte, u.a. durch den Einsatz neuer Materialien, ein guter Ansatzpunkt im „adäquaten Zusammenspiel von Schale und Polsterung“ der Schoner gefunden werden. Die Untersuchung hat weiterhin gezeigt, dass zumindest teilweise eine deutliche Verbesserung der Dämpfungswirkung der Schienbeinschoner in den letzten Jahren erreicht werden konnte.
Traglast- und Einspielanalysen sind vereinfachte doch exakte Verfahren der Plastizität, die neben ausreichender Verformbarkeit keine einschränkenden Voraussetzungen beinhalten. Die Vereinfachungen betreffen die Beschaffung der Daten und Modelle für Details der Lastgeschichte und des Stoffverhaltens. Anders als die klassische Behandlung nichtlinearer Probleme der Strukturmechanik führt die Methode auf Optimierungsprobleme. Diese sind bei realistischen FEM-Modellen sehr groß. Das hat die industrielle Anwendung der Traglast- und Einspielanalysen stark verzögert. Diese Situation wird durch das Brite-EuRam Projekt LISA grundlegend geändert. Die Autoren möchten der Europäischen Kommission an dieser Stelle für die Förderung ausdrücklich danken. In LISA entsteht auf der Basis des industriellen FEM-Programms PERMAS ein Verfahren zur direkten Berechnung der Tragfähigkeit duktiler Strukturen. Damit kann der Betriebsbereich von Komponenten und Bauwerken auf den plastischen Bereich erweitert werden, ohne den Aufwand gegenüber elastischen Analysen wesentlich zu erhöhen. Die beachtlichen Rechenzeitgewinne erlauben Parameterstudien und die Berechnung von Interaktionsdiagrammen, die einen schnellen Überblick über mögliche Betriebsbereiche vermitteln. Es zeigt sich, daß abhängig von der Komponente und ihren Belastungen teilweise entscheidende Sicherheitsgewinne zur Erweiterung der Betriebsbereiche erzielt werden können. Das Vorgehen erfordert vom Anwender oft ein gewisses Umdenken. Es werden keine Spannungen berechnet, um damit Sicherheit und Lebensdauer zu interpretieren. Statt dessen berechnet man direkt die gesuchte Sicherheit. Der Post-Prozessor wird nur noch zur Modell- und Rechenkontrolle benötigt. Das Vorgehen ist änhlich der Stabilitätsanalyse (Knicken, Beulen). Durch namhafte industrielle Projektpartner werden Validierung und die Anwendbarkeit auf eine breite Palette technischer Probleme garantiert. Die ebenfalls in LISA geplante Zuverlässigkeitsanalyse ist erst auf der Basis direkter Verfahren effektiv möglich. Ohne Traglast- und Einspielanalyse ist plastische Strukturoptimierung auch heute kaum durchführbar.
Genaue Kenntnis der Spannungen und Verformungen in passiven Komponenten gewinnt man mit detailierten inelastischen FEM Analysen. Die lokale Beanspruchung läßt sich aber nicht direkt mit einer Beanspruchbarkeit im strukturmechanischen Sinne vergleichen. Konzentriert man sich auf die Frage nach der Tragfähigkeit, dann vereinfacht sich die Analyse. Im Rahmen der Plastizitätstheorie berechnen Traglast- und Einspielanalyse die tragbaren Lasten direkt und exakt. In diesem Beitrag wird eine Implementierung der Traglast- und Einspielsätze in ein allgemeines FEM Programm vorgestellt, mit der die Tragfähigkeit passiver Komponenten direkt berechnet wird. Die benutzten Konzepte werden in Bezug auf die übliche Strukturanalyse erläutert. Beispiele mit lokal hoher Beanspruchung verdeutlichen die Anwendung der FEM basierten Traglast- und Einspielanalysen. Die berechneten Interaktionsdiagramme geben einen guten Überblick über die möglichen Betriebsbereiche passiver Komponenten. Die Traglastanalyse bietet auch einen strukturmechanischen Zugang zur Kollapslast rißbehafteter Komponenten aus hochzähem Material.
Limit and shakedown theorems are exact theories of classical plasticity for the direct computation of safety factors or of the load carrying capacity under constant and varying loads. Simple versions of limit and shakedown analysis are the basis of all design codes for pressure vessels and pipings. Using Finite Element Methods more realistic modeling can be used for a more rational design. The methods can be extended to yield optimum plastic design. In this paper we present a first implementation in FE of limit and shakedown analyses for perfectly plastic material. Limit and shakedown analyses are done of a pipe–junction and a interaction diagram is calculated. The results are in good correspondence with the analytic solution we give in the appendix.
Im Rahmen von Ermüdungsanalysen ist nachzuweisen, daß die thermisch bedingten fortschreitenden Deformationen begrenzt bleiben. Hierzu ist die Abgrenzung des Shakedown-Bereiches (Einspielen) vom Ratchetting-Bereich (fortschreitende Deformation) von Interesse. Im Rahmen eines EU-geförderten Forschungsvorhabens wurden Experimente mit einem 4-Stab-Modell durchgeführt. Das Experiment bestand aus einem wassergekühlten inneren Rohr und drei isolierten und beheizbaren äußeren Probestäben. Das System wurde durch alternierende Axialkräfte, denen alternierende Temperaturen an den äußeren Stäben überlagert wurden, belastet. Die Versuchsparameter wurden teilweise nach vorausgegangenen Einspielanalysen gewählt. Während der Versuchsdurchführung wurden Temperaturen und Dehnungen zeitabhängig gemessen. Begleitend und nachfolgend zur Versuchsdurchführung wurden die Belastungen und die daraus resultierenden Beanspruchungen nachvollzogen. Bei dieser inkrementellen elasto-plastischen Analyse mit dem Programm ANSYS wurden unterschiedliche Werkstoffmodelle angesetzt. Die Ergebnisse dieser Simulationsberechnung dienen dazu, die Shakedown-Analysen mittels FE-Methode zu verifizieren.
Traglast- und Einspielanalysen sind vereinfachte doch exakte Verfahren der Plastizität, die neben ausreichender Verformbarkeit keine einschränkenden Voraussetzungen beinhalten. Die Vereinfachungen betreffen die Beschaffung der Daten und Modelle für Details der Lastgeschichte und des Stoffverhaltens. Anders als die klassische Behandlung nichtlinearer Probleme der Strukturmechanik führt die Methode auf Optimierungsprobleme. Diese sind bei realistischen FEM-Modellen sehr groß. Das hat die industrielle Anwendung der Traglast- und Einspielanalysen stark verzögert. Diese Situation wird durch das Brite-EuRam Projekt LISA grundlegend geändert. In LISA entsteht auf der Basis des industriellen FEM-Programms PERMAS ein Verfahren zur direkten Berechnung der Tragfähigkeit duktiler Strukturen. Damit kann der Betriebsbereich von Komponenten und Bauwerken auf den plastischen Bereich erweitert werden, ohne den Aufwand gegenüber elastischen Analysen wesentlich zu erhöhen. Die beachtlichen Rechenzeitgewinne erlauben Parameterstudien und die Berechnung von Interaktionsdiagrammen, die einen schnellen Überblick über mögliche Betriebsbereiche vermitteln. Es zeigt sich, daß abhängig von der Komponente und ihren Belastungen teilweise entscheidende Sicherheitsgewinne zur Erweiterung der Betriebsbereiche erzielt werden können. Das Vorgehen erfordert vom Anwender oft ein gewisses Umdenken. Es werden keine Spannungen berechnet, um damit Sicherheit und Lebensdauer zu interpretieren. Statt dessen berechnet man direkt die gesuchte Sicherheit. Der Post-Prozessor wird nur noch zur Modell- und Rechenkontrolle benötigt. Das Vorgehen ist ähnlich der Stabilitätsanalyse (Knicken, Beulen). Durch namhafte industrielle Projektpartner werden Validierung und die Anwendbarkeit auf eine breite Palette technischer Probleme garantiert. Die ebenfalls in LISA entwickelten Zuverlässigkeitsanalysen sind nichlinear erst auf der Basis direkter Verfahren effektiv möglich. Ohne Traglast- und Einspielanalyse ist plastische Strukturoptimierung auch heute kaum durchführbar. Auf die vorgesehenen Erweiterungen der Werkstoffmodellierung für nichtlineare Verfestigung und für Schädigung konnte hier nicht eingegangen werden. Es herrscht ein deutlicher Mangel an Experimenten zum Nachweis der Grenzen zwischen elastischem Einspielen und dem Versagen durch LCF oder durch Ratchetting.