• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Administration
  • FAQ

Refine

Author

  • Marc Schreiber (10)
  • Bodo Kraft (9)
  • Albert Zündorf (6)
  • Kai Barkschat (2)
  • Oliver Schmidts (2)
  • Andreas Steinmetzler (1)
  • Maik Boltes (1)
  • Stefan Hirtbach (1)

Year of publication

  • 2018 (2)
  • 2017 (3)
  • 2016 (2)
  • 2015 (1)
  • 2014 (1)
  • 2013 (1)

Document Type

  • Conference Proceeding (8)
  • Article (2)

Language

  • English (9)
  • German (1)

Has Fulltext

  • no (8)
  • yes (2)

10 search hits

  • 1 to 10
  • BibTeX
  • CSV
  • RIS
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Software in the city: visual guidance through large scale software projects (2013)
Marc Schreiber ; Stefan Hirtbach ; Bodo Kraft ; Andreas Steinmetzler
Using Continuous Integration to organize and monitor the annotation process of domain specific corpora (2014)
Marc Schreiber ; Kai Barkschat ; Bodo Kraft
Quick Pad Tagger : An Efficient Graphical User Interface for Building Annotated Corpora with Multiple Annotation Layers (2015)
Marc Schreiber ; Kai Barkschat ; Bodo Kraft ; Albert Zündorf
Cost-efficient quality assurance of natural language processing tools through continuous monitoring with continuous integration (2016)
Marc Schreiber ; Bodo Kraft ; Albert Zündorf
Mit Maximum-Entropie das Parsing natürlicher Sprache erlernen (2016)
Marc Schreiber
Für die Verarbeitung von natürlicher Sprache ist ein wichtiger Zwischenschritt das Parsing, bei dem für Sätze der natürlichen Sprache Ableitungsbäume bestimmt werden. Dieses Verfahren ist vergleichbar zum Parsen formaler Sprachen, wie z. B. das Parsen eines Quelltextes. Die Parsing-Methoden der formalen Sprachen, z. B. Bottom-up-Parser, können nicht auf das Parsen der natürlichen Sprache übertragen werden, da keine Formalisierung der natürlichen Sprachen existiert [3, 12, 23, 30]. In den ersten Programmen, die natürliche Sprache verarbeiten [32, 41], wurde versucht die natürliche Sprache mit festen Regelmengen zu verarbeiten. Dieser Ansatz stieß jedoch schnell an seine Grenzen, da die Regelmenge nicht vollständig sowie nicht minimal ist und wegen der benötigten Menge an Regeln schwer zu verwalten ist. Die Korpuslinguistik [22] bot die Möglichkeit, die Regelmenge durch Supervised-Machine-Learning-Verfahren [2] abzulösen. Teil der Korpuslinguistik ist es, große Textkorpora zu erstellen und diese mit sprachlichen Strukturen zu annotieren. Zu diesen Strukturen gehören sowohl die Wortarten als auch die Ableitungsbäume der Sätze. Vorteil dieser Methodik ist es, dass repräsentative Daten zur Verfügung stehen. Diese Daten werden genutzt, um mit Supervised-Machine-Learning-Verfahren die Gesetzmäßigkeiten der natürliche Sprachen zu erlernen. Das Maximum-Entropie-Verfahren ist ein Supervised-Machine-Learning-Verfahren, das genutzt wird, um natürliche Sprache zu erlernen. Ratnaparkhi [25] nutzt Maximum-Entropie, um Ableitungsbäume für Sätze der natürlichen Sprache zu erlernen. Dieses Verfahren macht es möglich, die natürliche Sprache (abgebildet als Σ∗) trotz einer fehlenden formalen Grammatik zu parsen.
Metrics driven research collaboration: focusing on common project goals continuously (2017)
Marc Schreiber ; Bodo Kraft ; Albert Zündorf
Multi-pedestrian tracking by moving Bluetooth-LE beacons and stationary receivers (2017)
Oliver Schmidts ; Maik Boltes ; Bodo Kraft ; Marc Schreiber
NLP Lean Programming Framework: Developing NLP Applications More Effectively (2018)
Marc Schreiber ; Bodo Kraft ; Albert Zündorf
This paper presents NLP Lean Programming framework (NLPf), a new framework for creating custom natural language processing (NLP) models and pipelines by utilizing common software development build systems. This approach allows developers to train and integrate domain-specific NLP pipelines into their applications seamlessly. Additionally, NLPf provides an annotation tool which improves the annotation process significantly by providing a well-designed GUI and sophisticated way of using input devices. Due to NLPf’s properties developers and domain experts are able to build domain-specific NLP applications more efficiently. NLPf is Opensource software and available at https:// gitlab.com/schrieveslaach/NLPf.
Continuously evaluated research projects in collaborative decoupled environments (2018)
Oliver Schmidts ; Bodo Kraft ; Marc Schreiber ; Albert Zündorf
Often, research results from collaboration projects are not transferred into productive environments even though approaches are proven to work in demonstration prototypes. These demonstration prototypes are usually too fragile and error-prone to be transferred easily into productive environments. A lot of additional work is required. Inspired by the idea of an incremental delivery process, we introduce an architecture pattern, which combines the approach of Metrics Driven Research Collaboration with microservices for the ease of integration. It enables keeping track of project goals over the course of the collaboration while every party may focus on their expert skills: researchers may focus on complex algorithms, practitioners may focus on their business goals. Through the simplified integration (intermediate) research results can be introduced into a productive environment which enables getting an early user feedback and allows for the early evaluation of different approaches. The practitioners’ business model benefits throughout the full project duration.
Metrics Driven Research Collaboration: Focusing on Common Project Goals Continuously (2017)
Marc Schreiber ; Bodo Kraft ; Albert Zündorf
Research collaborations provide opportunities for both practitioners and researchers: practitioners need solutions for difficult business challenges and researchers are looking for hard problems to solve and publish. Nevertheless, research collaborations carry the risk that practitioners focus on quick solutions too much and that researchers tackle theoretical problems, resulting in products which do not fulfill the project requirements. In this paper we introduce an approach extending the ideas of agile and lean software development. It helps practitioners and researchers keep track of their common research collaboration goal: a scientifically enriched software product which fulfills the needs of the practitioner’s business model. This approach gives first-class status to application-oriented metrics that measure progress and success of a research collaboration continuously. Those metrics are derived from the collaboration requirements and help to focus on a commonly defined goal. An appropriate tool set evaluates and visualizes those metrics with minimal effort, and all participants will be pushed to focus on their tasks with appropriate effort. Thus project status, challenges and progress are transparent to all research collaboration members at any time.
  • 1 to 10

OPUS4 Logo

  • Contact
  • Imprint
  • Datenschutzerklärung
  • Sitelinks