Refine
Institute
Language
- English (6)
Document Type
- Article (6)
Keywords
- (Poly)saccharides (1)
- Aloe vera (1)
- Biomass (1)
- Chemometrics (1)
- Molecular weight determination (1)
- NMR (1)
- Organic acids (1)
- PLS-regression (1)
- Spectroscopy (1)
- qNMR (1)
Is part of the Bibliography
- no (6)
Several species of (poly)saccharides and organic acids can be found often simultaneously in various biological matrices, e.g., fruits, plant materials, and biological fluids. The analysis of such matrices sometimes represents a challenging task. Using Aloe vera (A. vera) plant materials as an example, the performance of several spectro-scopic methods (80 MHz benchtop NMR, NIR, ATR-FTIR and UV–vis) for the simultaneous analysis of quality parameters of this plant material was compared. The determined parameters include (poly)saccharides such as aloverose, fructose and glucose as well as organic acids (malic, lactic, citric, isocitric, acetic, fumaric, benzoic and sorbic acids). 500 MHz NMR and high-performance liquid chromatography (HPLC) were used as the reference methods.
UV–vis data can be used only for identification of added preservatives (benzoic and sorbic acids) and drying agent (maltodextrin) and semiquantitative analysis of malic acid. NIR and MIR spectroscopies combined with multivariate regression can deliver more informative overview of A. vera extracts being able to additionally quantify glucose, aloverose, citric, isocitric, malic, lactic acids and fructose. Low-field NMR measurements can be used for the quantification of aloverose, glucose, malic, lactic, acetic, and benzoic acids. The benchtop NMR method was successfully validated in terms of robustness, stability, precision, reproducibility and limit of detection (LOD) and quantification (LOQ), respectively. All spectroscopic techniques are useful for the screening of (poly)saccharides and organic acids in plant extracts and should be applied according to its availability as well as information and confidence required for the specific analytical goal. Benchtop NMR spectroscopy seems to be the most feasible solution for quality control of A. vera products.
As a low-input crop, Miscanthus offers numerous advantages that, in addition to agricultural applications, permits its exploitation for energy, fuel, and material production. Depending on the Miscanthus genotype, season, and harvest time as well as plant component (leaf versus stem), correlations between structure and properties of the corresponding isolated lignins differ. Here, a comparative study is presented between lignins isolated from M. x giganteus, M. sinensis, M. robustus and M. nagara using a catalyst-free organosolv pulping process. The lignins from different plant constituents are also compared regarding their similarities and differences regarding monolignol ratio and important linkages. Results showed that the plant genotype has the weakest influence on monolignol content and interunit linkages. In contrast, structural differences are more significant among lignins of different harvest time and/or season. Analyses were performed using fast and simple methods such as nuclear magnetic resonance (NMR) spectroscopy. Data was assigned to four different linkages (A: β-O-4 linkage, B: phenylcoumaran, C: resinol, D: β-unsaturated ester). In conclusion, A content is particularly high in leaf-derived lignins at just under 70% and significantly lower in stem and mixture lignins at around 60% and almost 65%. The second most common linkage pattern is D in all isolated lignins, the proportion of which is also strongly dependent on the crop portion. Both stem and mixture lignins, have a relatively high share of approximately 20% or more (maximum is M. sinensis Sin2 with over 30%). In the leaf-derived lignins, the proportions are significantly lower on average. Stem samples should be chosen if the highest possible lignin content is desired, specifically from the M. x giganteus genotype, which revealed lignin contents up to 27%. Due to the better frost resistance and higher stem stability, M. nagara offers some advantages compared to M. x giganteus. Miscanthus crops are shown to be very attractive lignocellulose feedstock (LCF) for second generation biorefineries and lignin generation in Europe.
The molecular weight properties of lignins are one of the key elements that need to be analyzed for a successful industrial application of these promising biopolymers. In this study, the use of 1H NMR as well as diffusion-ordered spectroscopy (DOSY NMR), combined with multivariate regression methods, was investigated for the determination of the molecular weight (Mw and Mn) and the polydispersity of organosolv lignins (n = 53, Miscanthus x giganteus, Paulownia tomentosa, and Silphium perfoliatum). The suitability of the models was demonstrated by cross validation (CV) as well as by an independent validation set of samples from different biomass origins (beech wood and wheat straw). CV errors of ca. 7–9 and 14–16% were achieved for all parameters with the models from the 1H NMR spectra and the DOSY NMR data, respectively. The prediction errors for the validation samples were in a similar range for the partial least squares model from the 1H NMR data and for a multiple linear regression using the DOSY NMR data. The results indicate the usefulness of NMR measurements combined with multivariate regression methods as a potential alternative to more time-consuming methods such as gel permeation chromatography.
Lignin is a promising renewable biopolymer being investigated worldwide as an environmentally benign substitute of fossil-based aromatic compounds, e.g. for the use as an excipient with antioxidant and antimicrobial properties in drug delivery or even as active compound. For its successful implementation into process streams, a quick, easy, and reliable method is needed for its molecular weight determination. Here we present a method using 1H spectra of benchtop as well as conventional NMR systems in combination with multivariate data analysis, to determine lignin’s molecular weight (Mw and Mn) and polydispersity index (PDI). A set of 36 organosolv lignin samples (from Miscanthus x giganteus, Paulownia tomentosa and Silphium perfoliatum) was used for the calibration and cross validation, and 17 samples were used as external validation set. Validation errors between 5.6% and 12.9% were achieved for all parameters on all NMR devices (43, 60, 500 and 600 MHz). Surprisingly, no significant difference in the performance of the benchtop and high-field devices was found. This facilitates the application of this method for determining lignin’s molecular weight in an industrial environment because of the low maintenance expenditure, small footprint, ruggedness, and low cost of permanent magnet benchtop NMR systems.
Although several successful applications of benchtop nuclear magnetic resonance (NMR) spectroscopy in quantitative mixture analysis exist, the possibility of calibration transfer remains mostly unexplored, especially between high- and low-field NMR. This study investigates for the first time the calibration transfer of partial least squares regressions [weight average molecular weight (Mw) of lignin] between high-field (600 MHz) NMR and benchtop NMR devices (43 and 60 MHz). For the transfer, piecewise direct standardization, calibration transfer based on canonical correlation analysis, and transfer via the extreme learning machine auto-encoder method are employed. Despite the immense resolution difference between high-field and low-field NMR instruments, the results demonstrate that the calibration transfer from high- to low-field is feasible in the case of a physical property, namely, the molecular weight, achieving validation errors close to the original calibration (down to only 1.2 times higher root mean square errors). These results introduce new perspectives for applications of benchtop NMR, in which existing calibrations from expensive high-field instruments can be transferred to cheaper benchtop instruments to economize.
To respond to the increasing demand for hyaluronic acid (HA) in dietary supplements (DSs) and nutricosmetics marketed for the treatment of osteoarthritis or moistening, it is essential to have an accurate and reliable method for its analysis in the final products. The study aimed to develop and validate alternative method for the quality control of HA in DSs using low-field (LF) and high-field (HF) nuclear magnetic resonance (NMR) spectroscopy at 80 MHz and 600 MHz, respectively. Moreover, chondroitin sulphate (CH), another active ingredient in DSs, can be simultaneously quantified. The 1H-NMR methods have been successfully validated in terms of limit of detection (LOD) and limit of quantitation (LOQ), which were found to be 0.1 mg/mL and 0.2 mg/mL (80 MHz) as well as 0.2 mg/mL and 0.6 mg/mL (600 MHz). Recovery rates were estimated to be between 92 and 120% on both spectrometers; precision including sample preparation was found to be 4.2% and 8.0% for 600 MHz and 80 MHz, respectively. Quantitative results obtained by HF and LF NMR were comparable for 16 DSs with varying matrix. HF NMR experiments at 70 ℃ serve as a simple and efficient quality control tool for HA and CH in multicomponent DSs. Benchtop NMR measurements, upon preceding acid hydrolysis, offer a cost-effective and cryogen-free alternative for analyzing DSs in the absence of CH and paramagnetic matrix components.