Refine
Year of publication
Institute
Document Type
- Article (28)
- Conference Proceeding (3)
- Book (1)
- Report (1)
Keywords
Validation of a novel method for detecting and stabilizing malfunctioning areas in fuel cell stacks
(2014)
In this paper a setup for detecting malfunctioning areas of MEAs in fuel cell stacks is described. Malfunctioning areas generate electric cross currents inside bipolar plates. To exploit this we suggest bipolar plates consisting not of two but of three layers. The third one is a highly conducting layer and segmented such that the cross currents move along the segments to the surface of the stack where they can be measured by an inductive sensor. With this information a realistic model can be used to detect the malfunctioning area. Furthermore the third layer will prevent any current inhomogeneity of a malfunctioning cell to spread to neighbouring cells in the stack. In this work the results of measurements in a realistic cell setup will be compared with the results obtained in simulation studies with the same configuration. The basis for the comparison is the reliable characterisation of the electrical properties of the cell components and the implication of these results into the simulation model. The experimental studies will also show the limits in the maximum number of segments, which can be used for a reliable detection of cross currents.
Based on an identifying Volterra type integral equation for randomly right censored observations from a lifetime distribution function F, we solve the corresponding estimating equation by an explicit and implicit Euler scheme. While the first approach results in some known estimators, the second one produces new semi-parametric and pre-smoothed Kaplan–Meier estimators which are real distribution functions rather than sub-distribution functions as the former ones are. This property of the new estimators is particular useful if one wants to estimate the expected lifetime restricted to the support of the observation time.
Specifically, we focus on estimation under the semi-parametric random censorship model (SRCM), that is, a random censorship model where the conditional expectation of the censoring indicator given the observation belongs to a parametric family. We show that some estimated linear functionals which are based on the new semi-parametric estimator are strong consistent, asymptotically normal, and efficient under SRCM. In a small simulation study, the performance of the new estimator is illustrated under moderate sample sizes. Finally, we apply the new estimator to a well-known real dataset.
A novel scheme for precise diagnostics and effective stabilization of currents in a fuel cell stack
(2010)
A novel scheme for detecting inhomogeneous internal currents in a fuel cell stack is presented. In this paper the scheme is investigated for the case that the flow field plates consist of graphite. Then plates of high conductivity, e.g. aluminium between the flow field plates together with small slits in these plates have three effects: (a) Whenever a local inhomogeneity of the electric current occurs at a particular cell in the stack, this will induce a surface current close to that cell perpendicular to the averaged current. This current can be detected. (b) The plates of high conductivity completely prevent the inhomogeneities from spreading to neighbouring cells. (c) Even at the particular cell the inhomogeneity is suppressed as far as possible. Thus this scheme leads to much better diagnostic possibilities and at the same time reduces electric instabilities to an extent, where they probably become harmless. This scheme will first be explained for a simple model to clarify the idea. However, very precise three dimensional computations using realistic parameters are presented, corroborating the results of the simple model.
A novel tomographic scheme for analysing the state of any single membrane electrode assembly (MEA) in a stack is suggested. Plates of very high conductivity placed between every fuel cell and slitted in an appropriate manner cause surface currents at well-defined locations of the stack. We show that knowing these surface currents, information about anomalies of the currents in a MEA can be obtained using the methods of tomography. The results are mathematically not unique. However, when assuming plausible defect structures, one can exclude improbable deficiencies by applying a special form of simulated annealing. We present numerical calculations of typical examples demonstrating that the essential defects of the MEA in any single cell of the stack can be detected and their extent can be determined.