Refine
Year of publication
- 2020 (3)
Institute
Has Fulltext
- no (3)
Language
- English (3)
Document Type
- Conference Proceeding (2)
- Article (1)
Keywords
Is part of the Bibliography
- no (3)
The predictive control of commercial vehicle energy management systems, such as vehicle thermal management or waste heat recovery (WHR) systems, are discussed on the basis of information sources from the field of environment recognition and in combination with the determination of the vehicle system condition.
In this article, a mathematical method for predicting the exhaust gas mass flow and the exhaust gas temperature is presented based on driving data of a heavy-duty vehicle. The prediction refers to the conditions of the exhaust gas at the inlet of the exhaust gas recirculation (EGR) cooler and at the outlet of the exhaust gas aftertreatment system (EAT). The heavy-duty vehicle was operated on the motorway to investigate the characteristic operational profile. In addition to the use of road gradient profile data, an evaluation of the continuously recorded distance signal, which represents the distance between the test vehicle and the road user ahead, is included in the prediction model. Using a Fourier analysis, the trajectory of the vehicle speed is determined for a defined prediction horizon.
To verify the method, a holistic simulation model consisting of several hierarchically structured submodels has been developed. A map-based submodel of a combustion engine is used to determine the EGR and EAT exhaust gas mass flows and exhaust gas temperature profiles. All simulation results are validated on the basis of the recorded vehicle and environmental data. Deviations from the predicted values are analyzed and discussed.
In addition to very high safety and reliability requirements, the design of internal combustion engines (ICE) in aviation focuses on economic efficiency. The objective must be to design the aircraft powertrain optimized for a specific flight mission with respect to fuel consumption and specific engine power. Against this background, expert tools provide valuable decision-making assistance for the customer. In this paper, a mathematical calculation model for the fuel consumption of aircraft ICE is presented. This model enables the derivation of fuel consumption maps for different engine configurations. Depending on the flight conditions and based on these maps, the current and the integrated fuel consumption for freely definable flight emissions is calculated. For that purpose, an interpolation method is used, that has been optimized for accuracy and calculation time. The mission boundary conditions flight altitude and power requirement of the ICE form the basis for this calculation. The mathematical fuel consumption model is embedded in a parent program. This parent program presents the simulated fuel consumption by means of an example flight mission for a representative airplane. The focus of the work is therefore on reproducing exact consumption data for flight operations. By use of the empirical approaches according to Gagg-Farrar [1] the power and fuel consumption as a function of the flight altitude are determined. To substantiate this approaches, a 1-D ICE model based on the multi-physical simulation tool GT-Suite® has been created. This 1-D engine model offers the possibility to analyze the filling and gas change processes, the internal combustion as well as heat and friction losses for an ICE under altitude environmental conditions. Performance measurements on a dynamometer at sea level for a naturally aspirated ICE with a displacement of 1211 ccm used in an aviation aircraft has been done to validate the 1-D ICE model. To check the plausibility of the empirical approaches with respect to the fuel consumption and performance adjustment for the flight altitude an analysis of the ICE efficiency chain of the 1-D engine model is done. In addition, a comparison of literature and manufacturer data with the simulation results is presented.
The chemical industry is one of the most important industrial sectors in Germany in terms of manufacturing revenue. While thermodynamic boundary conditions often restrict the scope for reducing the energy consumption of core processes, secondary processes such as cooling offer scope for energy optimisation. In this contribution, we therefore model and optimise an existing cooling system. The technical boundary conditions of the model are provided by the operators, the German chemical company BASF SE. In order to systematically evaluate different degrees of freedom in topology and operation, we formulate and solve a Mixed-Integer Nonlinear Program (MINLP), and compare our optimisation results with the existing system.