Refine
Institute
Document Type
- Article (5)
- Conference Proceeding (4)
Keywords
- Aircraft sizing (1)
- CFD (1)
- Parasitic drag (1)
- UAV (1)
Is part of the Bibliography
- no (9)
This paper presents a novel method for airfoil drag estimation at Reynolds numbers between 4×10⁵ and 4×10⁶. The novel method is based on a systematic study of 40 airfoils applying over 600 numerical simulations and considering natural transition. The influence of the airfoil thickness-to-chord ratio, camber, and freestream Reynolds number on both friction and pressure drag is analyzed in detail. Natural transition significantly affects drag characteristics and leads to distinct drag minima for different Reynolds numbers and thickness-to-chord ratios. The results of the systematic study are used to develop empirical correlations that can accurately predict an airfoil drag at low-lift conditions. The new approach estimates a transition location based on airfoil thickness-to-chord ratio, camber, and Reynolds number. It uses the transition location in a mixed laminar–turbulent skin-friction calculation, and corrects the skin-friction coefficient for separation effects. Pressure drag is estimated separately based on correlations of thickness-to-chord ratio, camber, and Reynolds number. The novel method shows excellent accuracy when compared with wind-tunnel measurements of multiple airfoils. It is easily integrable into existing aircraft design environments and is highly beneficial in the conceptual design stage.
A review of guidelines and best practices for subsonic aerodynamic simulations using RANS CFD
(2019)
The paper presents the derivation of a new equivalent skin friction coefficient for estimating the parasitic drag of short-to-medium range fixed-wing unmanned aircraft. The new coefficient is derived from an aerodynamic analysis of ten different unmanned aircraft used on surveillance, reconnaissance, and search and rescue missions. The aircraft are simulated using a validated unsteady Reynolds-averaged Navier Stokes approach. The UAV's parasitic drag is significantly influenced by the presence of miscellaneous components like fixed landing gears or electro-optical sensor turrets. These components are responsible for almost half of an unmanned aircraft's total parasitic drag. The new equivalent skin friction coefficient accounts for these effects and is significantly higher compared to other aircraft categories. It is used to initially size an unmanned aircraft for a typical reconnaissance mission. The improved parasitic drag estimation yields a much heavier unmanned aircraft when compared to the sizing results using available drag data of manned aircraft.
The paper presents an aerodynamic investigation of 70 different streamlined bodies with fineness ratios ranging from 2 to 10. The bodies are chosen to idealize both unmanned and small manned aircraft fuselages and feature cross-sectional shapes that vary from circular to quadratic. The study focuses on friction and pressure drag in dependency of the individual body’s fineness ratio and cross section. The drag forces are normalized with the respective body’s wetted area to comply with an empirical drag estimation procedure. Although the friction drag coefficient then stays rather constant for all bodies, their pressure drag coefficients decrease with an increase in fineness ratio. Referring the pressure drag coefficient to the bodies’ cross-sectional areas shows a distinct pressure drag minimum at a fineness ratio of about three. The pressure drag of bodies with a quadratic cross section is generally higher than for bodies of revolution. The results are used to derive an improved form factor that can be employed in a classic empirical drag estimation method. The improved formulation takes both the fineness ratio and cross-sectional shape into account. It shows superior accuracy in estimating streamlined body drag when compared with experimental data and other form factor formulations of the literature.
This paper analyzes the drag characteristics of several landing gear and turret configurations that are representative of unmanned aircraft tricycle landing gears and sensor turrets. A variety of these components were constructed via 3D-printing and analyzed in a wind-tunnel measurement campaign. Both turrets and landing gears were attached to a modular fuselage that supported both isolated components and multiple components at a time. Selected cases were numerically investigated with a Reynolds-averaged Navier-Stokes approach that showed good accuracy when compared to wind-tunnel data. The drag of main gear struts could be significantly reduced via streamlining their cross-sectional shape and keeping load carrying capabilities similar. The attachment of wheels introduced interference effects that increased strut drag moderately but significantly increased wheel drag compared to isolated cases. Very similar behavior was identified for front landing gears. The drag of an electro-optical and infrared sensor turret was found to be much higher than compared to available data of a clean hemisphere-cylinder combination. This turret drag was merely influenced by geometrical features like sensor surfaces and the rotational mechanism. The new data of this study is used to develop simple drag estimation recommendations for main and front landing gear struts and wheels as well as sensor turrets. These recommendations take geometrical considerations and interference effects into account.
The paper presents the derivation of a new equivalent skin friction coefficient for estimating the parasitic drag of short-to-medium range fixed-wing unmanned aircraft. The new coefficient is derived from an aerodynamic analysis of ten different unmanned aircraft used for surveillance, reconnaissance, and search and rescue missions. The aircraft is simulated using a validated unsteady Reynolds-averaged Navier Stokes approach. The UAV’s parasitic drag is significantly influenced by the presence of miscellaneous components like fixed landing gears or electro-optical sensor turrets. These components are responsible for almost half of an unmanned aircraft’s total parasitic drag. The new equivalent skin friction coefficient accounts for these effects and is significantly higher compared to other aircraft categories. It is used to initially size an unmanned aircraft for a typical reconnaissance mission. The improved parasitic drag estimation yields a much heavier unmanned aircraft when compared to the sizing results using available drag data of manned aircraft.