Refine
Institute
Has Fulltext
- no (4)
Document Type
- Article (3)
- Conference Proceeding (1)
Is part of the Bibliography
- no (4)
In Anbetracht weltweit zunehmend strengerer klimapolitischer
Ziele steigt auch der Druck für Nutzfahrzeughersteller, effizientere und umweltfreundlichere
Technologien zu entwickeln. Den Blick bei der Bewertung dieser
ausschließlich auf die Fahrzeugnutzung zu richten, ist längst nicht mehr zufriedenstellend.
Im Rahmen dieser Analyse wird ein gegenwärtig auf dem Markt erwerblicher
und in deutschen Städten bereits seit Jahren betriebener Hybridbus
energetisch und ökologisch mit einem konventionell angetriebenen, nahezu baugleichen
Modell entlang des Lebensweges bewertet.
Nach Definition von Ziel und Untersuchungsrahmen wird ein Überblick auf bereits
durchgeführte Lebenszyklusanalysen zu Hybridbussen im Stadtverkehr gegeben
und Schlussfolgerungen für die anschließende Analyse abgeleitet. Diese
wird im Rahmen einer energetischen und ökologischen Bewertung beider Produktsysteme
anhand der Parameter "Primärenergieeinsatz" und "CO2äq Emissionen"
praktiziert. Der Fahrzeugrumpf beider Fahrzeuge des gleichen Modells
wird dabei als einheitlich angenommen, sodass bei dem Vergleich der Herstellung
vereinfacht nur die sich unterscheidenden Komponenten des Antriebstranges
berücksichtigt werden. Die Resultate der Wirkungsabschätzung werden als
Differenz des Hybridbusses gegenüber dem Referenzfahrzeug über die einzelnen
Lebenszyklusphasen dargestellt. Schließlich werden Prognosen getroffen, ab
welcher Strecke die bei der Herstellung erzeugten höheren CO2äq Emissionen
des Hybridantriebstranges gegenüber dem Referenzmodell ausgeglichen werden.
In many cities, diesel buses are being replaced by electric buses with the aim of reducing local emissions and thus improving air quality. The protection of the environment and the health of the population is the highest priority of our society. For the transport companies that operate these buses, not only ecological issues but also economic issues are of great importance. Due to the high purchase costs of electric buses compared to conventional buses, operators are forced to use electric vehicles in a targeted manner in order to ensure amortization over the service life of the vehicles. A compromise between ecology and economy must be found in order to both protect the environment and ensure economical operation of the buses.
In this study, we present a new methodology for optimizing the vehicles’ charging time as a function of the parameters CO₂eq emissions and electricity costs. Based on recorded driving profiles in daily bus operation, the energy demands of conventional and electric buses are calculated for the passenger transportation in the city of Aachen in 2017. Different charging scenarios are defined to analyze the influence of the temporal variability of CO₂eq intensity and electricity price on the environmental impact and economy of the bus. For every individual day of a year, charging periods with the lowest and highest costs and emissions are identified and recommendations for daily bus operation are made. To enable both the ecological and economical operation of the bus, the parameters of electricity price and CO₂ are weighted differently, and several charging periods are proposed, taking into account the priorities previously set. A sensitivity analysis is carried out to evaluate the influence of selected parameters and to derive recommendations for improving the ecological and economic balance of the battery-powered electric vehicle.
In all scenarios, the optimization of the charging period results in energy cost savings of a maximum of 13.6% compared to charging at a fixed electricity price. The savings potential of CO₂eq emissions is similar, at 14.9%. From an economic point of view, charging between 2 a.m. and 4 a.m. results in the lowest energy costs on average. The CO₂eq intensity is also low in this period, but midday charging leads to the largest savings in CO₂eq emissions. From a life cycle perspective, the electric bus is not economically competitive with the conventional bus. However, from an ecological point of view, the electric bus saves on average 37.5% CO₂eq emissions over its service life compared to the diesel bus. The reduction potential is maximized if the electric vehicle exclusively consumes electricity from solar and wind power.
Heavy-duty trucks are one of the main contributors to greenhouse gas emissions in German traffic. Drivetrain electrification is an option to reduce tailpipe emissions by increasing energy conversion efficiency. To evaluate the vehicle’s environmental impacts, it is necessary to consider the entire life cycle. In addition to the daily use, it is also necessary to include the impact of production and disposal. This study presents the comparative life cycle analysis of a parallel hybrid and a conventional heavy-duty truck in long-haul operation. Assuming a uniform vehicle glider, only the differing parts of both drivetrains are taken into account to calculate the environmental burdens of the production. The use phase is modeled by a backward simulation in MATLAB/Simulink considering a characteristic driving cycle. A break-even analysis is conducted to show at what mileage the larger CO2eq emissions due to the production of the electric drivetrain are compensated. The effect of parameter variation on the break-even mileage is investigated by a sensitivity analysis. The results of this analysis show the difference in CO2eq/t km is negative, indicating that the hybrid vehicle releases 4.34 g CO2eq/t km over a lifetime fewer emissions compared to the diesel truck. The break-even analysis also emphasizes the advantages of the electrified drivetrain, compensating the larger emissions generated during production after already a distance of 15,800 km (approx. 1.5 months of operation time). The intersection coordinates, distance, and CO2eq, strongly depend on fuel, emissions for battery production and the driving profile, which lead to nearly all parameter variations showing an increase in break-even distance.