Refine
Institute
Has Fulltext
- no (11)
Document Type
- Conference Proceeding (6)
- Article (5)
Keywords
- graphene oxide (1)
- hydrogel (1)
- light-addressable actuator (1)
- microfluidic (1)
- valve (1)
Abstractauthoren Graphene oxide (GO) nanoparticles were incorporated in temperature-sensitive Poly(N-isopropylacrylamide) (PNIPAAm) hydrogels. The nanoparticles increase the light absorption and convert light energy into heat efficiently. Thus, the hydrogels with GO can be stimulated spatially resolved by illumination as it was demonstrated by IR thermography. The temporal progression of the temperature maximum was detected for different concentrations of GO within the polymer network. Furthermore, the compatibility of PNIPAAm hydrogels with GO and cell cultures was investigated. For this purpose, culture medium was incubated with hydrogels containing GO and the viability and morphology of chinese hamster ovary (CHO) cells was examined after several days of culturing in presence of this medium.
Light-stimulated hydrogel actuators with incorporated graphene oxide for microfluidic applications
(2015)
Temperature-responsive Poly-N-isopropylacrylamide (PNIPAAm) hydrogels were modified with graphene oxide (GO) nanoparticles to increase the light absorption significantly and these gels can be heated and stimulated optothermically. These light-responsive hydrogels are promising candidates as actuator material for microfluidic applications. For demonstration, the hydrogels were tested as light-driven valves for the active flow control within microfluidic channels by monitoring the pressure and flow for different operation states.
Two types of microvalves based on temperature-responsive poly(N-isopropylacrylamide) (PNIPAAm) and pH-responsive poly(sodium acrylate) (PSA) hydrogel films have been developed and tested. The PNIPAAm and PSA hydrogel films were prepared by means of in situ photopolymerization directly inside the fluidic channel of a microfluidic chip fabricated by combining Si and SU-8 technologies. The swelling/shrinking properties and height changes of the PNIPAAm and PSA films inside the fluidic channel were studied at temperatures of deionized water from 14 to 36 °C and different pH values (pH 3–12) of Titrisol buffer, respectively. Additionally, in separate experiments, the lower critical solution temperature (LCST) of the PNIPAAm hydrogel was investigated by means of a differential scanning calorimetry (DSC) and a surface plasmon resonance (SPR) method. Mass-flow measurements have shown the feasibility of the prepared hydrogel films to work as an on-chip integrated temperature- or pH-responsive microvalve capable to switch the flow channel on/off.