Refine
Year of publication
Institute
- Fachbereich Luft- und Raumfahrttechnik (19)
- ECSM European Center for Sustainable Mobility (3)
- FH Aachen (1)
- Fachbereich Elektrotechnik und Informationstechnik (1)
- Fachbereich Maschinenbau und Mechatronik (1)
- Fachbereich Wirtschaftswissenschaften (1)
- MASKOR Institut für Mobile Autonome Systeme und Kognitive Robotik (1)
Has Fulltext
- no (20) (remove)
Document Type
- Article (8)
- Conference Proceeding (7)
- Conference: Meeting Abstract (2)
- Conference Poster (1)
- Doctoral Thesis (1)
- Patent (1)
Keywords
This paper presents an approach to predicting the sound exposure on the ground caused by a landing aircraft with recuperating propellers. The noise source along the trajectory of a flight specified for a steeper approach is simulated based on measurements of sound power levels and additional parameters of a single propeller placed in a wind tunnel. To validate the measured data/measurement results, these simulations are also supported by overflight measurements of a test aircraft. It is shown that the simple source models of propellers do not provide fully satisfactory results since the sound levels are estimated too low. Nevertheless, with a further reference comparison, margins for an acceptable increase in the sound power level of the aircraft on its now steeper approach path could be estimated. Thus, in this case, a +7 dB increase in SWL would not increase the SEL compared to the conventional approach within only 2 km ahead of the airfield.
In this paper, an approach to propulsion system modelling for hybrid-electric general aviation aircraft is presented. Because the focus is on general aviation aircraft, only combinations of electric motors and reciprocating combustion engines are explored. Gas turbine hybrids will not be considered. The level of the component's models is appropriate for the conceptual design stage. They are simple and adaptable, so that a wide range of designs with morphologically different propulsive system architectures can be quickly compared. Modelling strategies for both mass and efficiency of each part of the propulsion system (engine, motor, battery and propeller) will be presented.