Refine
Institute
Has Fulltext
- no (6)
Language
- English (6)
Document Type
- Conference: Meeting Abstract (4)
- Article (2)
Keywords
- Acoustic Cardiac Trigger (1)
- Acoustic Trigger (1)
- Acoustic Wave Guide (1)
- Cardiac Gating (1)
- Patient Burn (1)
- cardiac gating (1)
- cardiovascular MR imaging (1)
- electrocardiogram (1)
- high field MR imaging (1)
- phonocardiogram (1)
Is part of the Bibliography
- no (6)
This study is designed to demonstrate the promise of navigator gated, susceptibility weighted fast spin-echo imaging in conjunction with ventricular blood suppression for anatomically accurate T2*-mapping of the heart. First results of phantom and volunteer studies demonstrate the geometrical integrity and high image quality obtained with UFLARE - even for strong T2*-weighting at 1.5T and 3.0T. T2*-mapping using UFLARE yielded mean T2* values for the inferoseptal myocardium of 29.96.6 ms at 1.5T and 22.34.8 ms at 3.0T. The results derived with susceptibility weighted UFLARE promise to extend the capabilities of CVMR including mapping and quantification of myocardial iron content.
This study demonstrates the feasibility of applying free-breathing, cardiac-gated, susceptibility-weighted fast spin-echo imaging together with black blood preparation and navigator-gated respiratory motion compensation for anatomically accurate T₂ mapping of the heart. First, T₂ maps are presented for oil phantoms without and with respiratory motion emulation (T₂ = (22.1 ± 1.7) ms at 1.5 T and T₂ = (22.65 ± 0.89) ms at 3.0 T). T₂ relaxometry of a ferrofluid revealed relaxivities of R2 = (477.9 ± 17) mM⁻¹s⁻¹ and R2 = (449.6 ± 13) mM⁻¹s⁻¹ for UFLARE and multiecho gradient-echo imaging at 1.5 T. For inferoseptal myocardial regions mean T₂ values of 29.9 ± 6.6 ms (1.5 T) and 22.3 ± 4.8 ms (3.0 T) were estimated. For posterior myocardial areas close to the vena cava T₂-values of 24.0 ± 6.4 ms (1.5 T) and 15.4 ± 1.8 ms (3.0 T) were observed. The merits and limitations of the proposed approach are discussed and its implications for cardiac and vascular T₂-mapping are considered.